In this study, drug nanocarriers were designed using linear copolymers with different contents of cholinium-based ionic liquid units, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA/Cl: 25, 50, and 75 mol%). The amphiphilicity of the copolymers was evaluated on the basis of their critical micelle concentration (CMC = 0.055-0.079 mg/mL), and their hydrophilicities were determined by water contact angles (WCA = 17°-46°). The chloride anions in the polymer chain were involved in ionic exchange reactions to introduce pharmaceutical anions, i.e., -aminosalicylate (PAS), clavulanate (CLV), piperacillin (PIP), and fusidate (FUS), which are established antibacterial agents for treating lung and respiratory diseases. The exchange reaction efficiency decreased in the following order: CLV > PAS > PIP >> FUS. The hydrophilicity of the ionic drug conjugates was slightly reduced, as indicated by the increased WCA values. The major fraction of particles with sizes ~20 nm was detected in systems with at least 50% TMAMA carrying PAS or PIP. The influence of the drug character and carrier structure was also observed in the kinetic profiles of the release processes driven by the exchange with phosphate anions (0.5-6.4 μg/mL). The obtained polymer-drug ionic conjugates (especially that with PAS) are promising carriers with potential medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795545 | PMC |
http://dx.doi.org/10.3390/ijms22010284 | DOI Listing |
Macromolecules
December 2024
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
We employ mesoscopic simulations to study the thermophoretic motion of polymers in a solvent via multiparticle collision dynamics (MPCD). As the usual solvent-monomer collision rules employed in MPCD involving polymers fail to cause thermophoresis, we extend the technique by introducing explicit solvent-monomer interactions, while the solvent molecules remain ideal with respect to one another. We find that with purely repulsive polymer-solvent interaction, the polymer exhibits thermophilic behavior, whereas to display thermophobic behavior, the polymer-solvent potential requires the presence of attractions between solvent particles and monomers, in accordance with previous experimental findings.
View Article and Find Full Text PDFSmall
December 2024
Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.
Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFACS Macro Lett
December 2024
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia.
Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!