In many basic shear flows, such as pipe, Couette, and channel flow, turbulence does not arise from an instability of the laminar state, and both dynamical states co-exist. With decreasing flow speed (i.e., decreasing Reynolds number) the fraction of fluid in laminar motion increases while turbulence recedes and eventually the entire flow relaminarizes. The first step towards understanding the nature of this transition is to determine if the phase change is of either first or second order. In the former case, the turbulent fraction would drop discontinuously to zero as the Reynolds number decreases while in the latter the process would be continuous. For Couette flow, the flow between two parallel plates, earlier studies suggest a discontinuous scenario. In the present study we realize a Couette flow between two concentric cylinders which allows studies to be carried out in large aspect ratios and for extensive observation times. The presented measurements show that the transition in this circular Couette geometry is continuous suggesting that former studies were limited by finite size effects. A further characterization of this transition, in particular its relation to the directed percolation universality class, requires even larger system sizes than presently available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823695PMC
http://dx.doi.org/10.3390/e23010058DOI Listing

Publication Analysis

Top Keywords

reynolds number
8
couette flow
8
flow
7
second-order phase
4
transition
4
phase transition
4
transition counter-rotating
4
counter-rotating taylor-couette
4
taylor-couette flow
4
flow experiment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!