Tungsten has been widely used in many industrial fields due to its excellent properties. However, owing to its characteristics of inherent brittleness at room temperature and high melting point, it is difficult to prepare tungsten parts with high complexity via traditional methods. In the present work, tungsten samples were prepared by laser powder bed fusion. The influence of each process parameter including laser power, scanning speed, and hatch spacing on the surface morphology, densification, and microstructure of tungsten samples was systematically investigated. The results showed that the use of the appropriate parameters, especially high laser power, can effectively improve the surface quality and obtain a dense surface. The tungsten samples with a relative density of 98.31% were obtained with optimized parameter combinations: a laser power of 300 W, scanning speed of 400 mm/s, and hatch spacing of 0.08 mm. Compared with scanning speed and hatch spacing, the laser power had a more obvious influence on the relative density. Additionally, for the grain morphology by microstructure inspection, elongated curved grains gradually transformed into fine straight columnar grains as the scanning speed increased. The hatch spacing would change the grain morphology slightly but had no significant effect on the grain size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796442 | PMC |
http://dx.doi.org/10.3390/ma14010165 | DOI Listing |
Nat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:
Objective: The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri-implant diseases among habitual nicotinic product (NP) users.
Methods: The research question was "Is aPDT effective for managing peri-implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri-implant diseases; probing depth; nicotine; and smoking.
Cureus
November 2024
School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu, MYS.
Background and objective Applying different hygiene tools for implant maintenance alters surface configurations, impacting bacterial adhesion on titanium implant surfaces and potentially leading to peri-implant diseases. This study aimed to assess the alterations in surface topography of titanium implant fixtures after utilizing hygiene instruments such as airflow; erbium, chromium-doped: yttrium, scandium, gallium, and garnet (Er, Cr: YSGG) laser; and titanium brush, under scanning electron microscope (SEM) observation. Materials and methods We employed an experimental laboratory study design for this research, involving 20 MegaGen ST titanium implant fixtures (MegaGen Implant Co.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!