Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference.

Ecotoxicol Environ Saf

Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland. Electronic address:

Published: January 2021

The non-steroidal anti-inflammatory drug diclofenac (DCF) is one of the commonly used and frequently detected drugs in water bodies, and several studies indicate its toxic effect on plants and algae. Studies performed with asynchronous Chlamydomonas reinhardtii cultures indicated that DCF inhibit the growth of population of the algae. Here, a synchronous population of C. reinhardtii, in which all cells are in the same developmental phase, is used. Following changes in cells size, photosynthetic activity and gene expression, we could compare, at the level of single cell, DCF-mediated effects with the effects caused by atrazine, a triazine herbicide that inhibits photosynthesis and triggers oxidative stress. Application of DCF and atrazine at the beginning of the cell cycle allowed us to follow the changes occurring in the cells in the subsequent stages of their development. Synchronized Chlamydomonas reinhardtii cultures (strain CC-1690, wild type) were exposed to diclofenac sodium salt (135 mg/L) or atrazine (77.6 µg/L). The cell suspension was sampled hourly (0-10 h) in the light period of the cell cycle to determine cell number and volume, photosynthetic pigment content, chlorophyll a fluorescence (OJIP test) in vivo, and selected gene expression (real-time qPCR), namely psbA, psaA, FSD1, MSD3 and APX1. The two toxicants differently influenced C. reinhardtii cells. Both substances decreased photosynthetic "vitality" (PI - performance index) of the cells, albeit for different reasons. While atrazine significantly disrupted the photosynthetic electron transport, resulting in excessive production of reactive oxygen species (ROS) and limited cell growth, DCF caused silencing of photosystem II (PSII) reaction centers, transforming them into "heat sinks", thus preventing significant ROS overproduction. Oxidative stress caused by atrazine was the probable reason for the rapid appearance of phytotoxic action soon after entering the cells, while the effects of DCF could only be seen several hours after treatment. A comparison of DCF-caused effects with the effects caused by atrazine led us to conclude that, although DCF cannot be regarded as typical photosynthetic herbicide, it exhibits an algicidal activity and can be potentially dangerous for aquatic plants and algae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111630DOI Listing

Publication Analysis

Top Keywords

chlamydomonas reinhardtii
12
caused atrazine
12
photosynthetic herbicide
8
plants algae
8
reinhardtii cultures
8
reinhardtii cells
8
gene expression
8
effects effects
8
effects caused
8
oxidative stress
8

Similar Publications

This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas.

Int J Mol Sci

December 2024

Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.

Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!