Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (Φ) and effective (Φ') quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC of 0.67 and 1.53 μM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and Φ. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 μM) and phospholipids (PL - at 0.89 and 1.11 μM) and decreased values of triglycerides (at 0.22 μM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 μM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111628 | DOI Listing |
Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Critical Path for Alzheimer's Disease (CPAD) Consortium, Critical Path institute, Tucson, AZ, USA.
Background: To help improve the Alzheimer's disease (AD) therapeutics research and development process, the Critical Path for Alzheimer's Disease (CPAD) Consortium at the Critical Path Institute (C-Path) provides a neutral framework for the drug development industry, regulatory agencies, academia, and patient advocacy organizations to collaborate. CPAD's extensive track record of developing regulatory-grade quantitative drug development tools motivates sponsors to share patient-level data and neuroimages from clinical trials. CPAD leverages these data and uses C-Path's core competencies in data management and standardization, quantitative modeling, and regulatory science to develop tools that help de-risk decision making in AD drug development.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Anti-amyloid immunotherapies modestly slow disease progression in early symptomatic AD; addition of other therapeutic modalities may be necessary to achieve larger treatment effects. Therapies that directly target tau can potentially produce substantial clinical benefit because the accumulation of insoluble tau protein is strongly correlated with the progression of AD. Which tau therapies are likely to be efficacious, whether or not to combine them with anti-amyloid therapies, and which individuals are most likely to benefit are important unresolved questions that would require multiple parallel design trials to answer.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFBackground: In AD trials, the treatment effect is typically evaluated by estimating the absolute difference in change from baseline to the end-of-study visit (e.g., 18 months) between treatment arms using the MMRM model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!