Nitrogen flow characteristics of solid waste in China.

Ecotoxicol Environ Saf

School of Geography and Tourism, Zhengzhou Normal University, Zhengzhou 450044, China. Electronic address:

Published: January 2021

The surge in solid waste (SW) has become major issues in the fields of public health and ecological environment fuelled by the rapid development of social economy. The fate of nitrogen contained in SW (SWN) varies with different treatment methods, which will affect the environment to varying degrees. It is of great practical and guiding significance to comprehensively evaluate the sources, fate and its cascading effects of SWN. Here, a systematic SWN flow evaluation of the generation, treatment and emissions in China from 2008 to 2017 was established. During this period, the SWN flow and the N pollution emissions from SW treatment increased by 19.7% and 27.6% respectively, with the domestic garbage being the largest contributor. This shows that it is particularly important to reinforce the classified of domestic garbage and resource recycling in China. Landfill was the main treatment, accounting for 51.8% of the total SWN. Landfill and incineration were the main sources of pollution N emissions, while compost treatment has the lowest contribution rate. It highlights the urgency of changing the waste treatment methods in China. About 92.3% of the N pollution emissions was lost to the atmosphere and 7.7% to the groundwater. NH and NO were the main pollutants to the atmosphere. Special attention is paid to the reduction and control of NH in landfill, dumping and compost processes, while NO in incineration. This study provides scientific basis for management and disposal of SW, so as to reduce its impact on the ecological environment and develop more sustainable policies for China and other developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111596DOI Listing

Publication Analysis

Top Keywords

pollution emissions
12
solid waste
8
ecological environment
8
treatment methods
8
swn flow
8
domestic garbage
8
treatment
6
china
5
swn
5
nitrogen flow
4

Similar Publications

Analysis of cytotoxicity and genotoxicity of diesel exhaust PM2.5 generated from diesel and dual natural gas-diesel engines.

Environ Toxicol Pharmacol

January 2025

Facultad de Medicina. Grupo de Genética Médica, Universidad de Antioquia, Medellín- Colombia. Electronic address:

Diesel exhaust particles (DEPs) are atmospheric pollutants associated with adverse health effects. In response to their impact, natural gas (NG) has emerged as a promising alternative fuel due to its cleaner combustion. Although the cytotoxicity and genotoxicity of DEPs from diesel or NG engines have been extensively studied, the impact of dual natural gas-diesel systems remains unexplored.

View Article and Find Full Text PDF

This study analyzes the anticipated impact of the deployment of green ships on reducing air pollutant emissions. We estimated air pollutant emissions from ships in Incheon Port, South Korea, and conducted a literature review and expert interviews to analyze changes in emissions as a function of the rate at which new ships can be converted to green ships in the future. The analysis showed that the PM10 and PM2.

View Article and Find Full Text PDF

Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.

View Article and Find Full Text PDF

Spectral and molecular insights into the variations of dissolved organic matter in shallow groundwater impacted by surface water recharge.

Water Res

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Dissolved organic matter (DOM) represents one of the most active elements in aquatic systems, whose fraction is engaged in chemical and biological reactions. However, fluorescence, molecular diversity and variations of DOM in groundwater systems with the alteration of surface water recharge remain unclear. Herein, Excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with principal component coefficients, parallel factor analyses (PARAFAC) with two‒dimensional correlation spectroscopy (2D-COS) were applied in this study.

View Article and Find Full Text PDF

Source segregation and treatment of urine and faeces from dairy cattle reduces GHG and NH emissions in covered storage.

J Environ Manage

January 2025

Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.

Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!