In this study, the production and compositional analysis of exopolysaccharides produced by Bacillus cereus KMS3-1 grown in metal amended conditions were investigated. In addition, the metal adsorption efficacy of exopolysaccharides (EPS) produced by KMS3-1 strain was evaluated in a batch mode. Increased production of exopolysaccharides by KMS3-1 strain was observed while growing under metal amended conditions (100 mg/L) and also, the yield was in the order of Pb(II)>Cu(II)>Cd(II)>Control. Characterization of EPS using FT-IR, XRD, and SEM analysis revealed that the EPS can interact with metal ions through their functional groups (O‒H, CH, C˭O, C‒O, and C‒C˭O) and assist the detoxification process. Further, equilibrium results were fitted with the Langmuir model and notably, the maximum adsorption capacity (Q) of EPS for Cd(II), Cu(II), and Pb(II) found to be 54.05, 71.42, and 78.74 mg/g, respectively. To the best of our knowledge, EPS demonstrating proficient metal adsorption was substantiated by XRD analysis in this study. Owing to good adsorbing nature, the exopolysaccharides could be used as chelating substances for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111567DOI Listing

Publication Analysis

Top Keywords

metal amended
8
amended conditions
8
metal adsorption
8
kms3-1 strain
8
metal
6
exopolysaccharides
5
eps
5
production functionality
4
functionality exopolysaccharides
4
exopolysaccharides bacteria
4

Similar Publications

Bioaccumulation of Cr by the Species and L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents.

Plants (Basel)

December 2024

Laboratorio de Ciencia de los Materiales, Facultad de Ciencias e Ingenierías Físicas y Formales, Universidad Católica de Santa María, Samuel Velarde 320, Arequipa 04000, Peru.

This research aimed to assess the bioaccumulation capacity of the species and L. using organic amendments to the phytoremediation of total chromium in the mid-zone of the Añashuayco Ravine, Uchumayo, Arequipa, impacted by tanneries from the Rio Seco Industrial Park. Additionally, it analyzed total chromium concentrations, soil physicochemical properties, and morphological changes in plants with and without organic matter.

View Article and Find Full Text PDF

Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments.

View Article and Find Full Text PDF

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

Environ Pollut

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.

View Article and Find Full Text PDF

Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid.

View Article and Find Full Text PDF

The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!