Microcystin-leucine arginine induced the apoptosis of GnRH neurons by activating the endoplasmic reticulum stress resulting in a decrease of serum testosterone level in mice.

Ecotoxicol Environ Saf

Immunology and Reproductive Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China. Electronic address:

Published: January 2021

Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacterial, resulting in decrease of testosterone levels in serum and leading to impaired spermatogenesis. Gonadotropin-releasing hormone (GnRH) neurons play crucial roles in the regulation of testosterone release. Meanwhile, it has been demonstrated that MC-LR is capable of entering the GnRH neurons and inducing apoptosis. Nevertheless, the molecular mechanism of MC-LR induced apoptosis of GnRH neurons remains elusive. In present study, we found that MC-LR inhibited the cell viability of GT1-7 cells. In addition, we discovered apoptosis of GnRH neurons and GT1-7 cells treated with MC-LR. And increased intracellular ROS production and the release of intracellular Ca were all observed following exposure to MC-LR. Furthermore, we also found the endoplasmic reticulum stress (ERs) and autophagy were activated by MC-LR. Additionally, pretreatment of the ERs inhibitor (4-Phenyl butyric acid) reduced the apoptotic rate of GT1-7 cells comparing with MC-LR exposure alone. Comparing with MC-LR treatment alone, apoptotic cell death was increased by pretreatment of GT1-7 cells with an autophagy inhibitor (3-methyladenine). Together, our data implicated that the treatment of MC-LR induced the apoptosis of GnRH neurons by activating the ERs resulting in a decrease of serum testosterone level in mice. Autophagy is a protective cellular process which was activated by ER stress and thus protected cells from apoptosis upon MC-LR exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111748DOI Listing

Publication Analysis

Top Keywords

gnrh neurons
24
apoptosis gnrh
16
gt1-7 cells
16
induced apoptosis
12
mc-lr
11
microcystin-leucine arginine
8
neurons activating
8
endoplasmic reticulum
8
reticulum stress
8
decrease serum
8

Similar Publications

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

Kisspeptin control of hypothalamus-pituitary-ovarian functions.

Vitam Horm

January 2025

Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.

The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.

View Article and Find Full Text PDF

Hypothalamic arcuate (ARC) kisspeptin neurons are considered the gonadotropin-releasing hormone pulse generator in rats. In virgin rats, the expression of the ARC kisspeptin gene (Kiss1) is repressed by proestrous levels of estradiol-17β (high E2) but not by diestrous levels of E2 (low E2). In lactating rats, ARC Kiss1 expression is repressed by low E2 during late lactation.

View Article and Find Full Text PDF

Effect of a GnRH injection on kisspeptin levels in girls with suspected precocious puberty: a randomized-controlled pilot study.

J Pediatr Endocrinol Metab

January 2025

Department of Paediatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Objectives: Kisspeptin plays a major role in the onset of puberty by stimulating the gonadotropin-releasing hormone (GnRH) neurons. The aim of this study was to investigate whether GnRH inhibits kisspeptin secretion via a negative feedback mechanism and potential associations between kisspeptin levels and other hormones of importance for pubertal onset.

Methods: Thirteen girls with suspected central precocious puberty underwent a GnRH stimulation test twice in a randomized, placebo-controlled manner.

View Article and Find Full Text PDF

Identification of puberty related miRNAs in the hypothalamus of female mice.

Mol Cell Endocrinol

January 2025

Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. Electronic address:

Background And Aims: Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!