Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotics are currently extensively used in human medicine, animal farming, agriculture and aquaculture, and their residue has become a global environmental problem. However, the effects of antibiotic on other pollutants in aquatic environment are still poorly understood. In this study, the influences of norfloxacin on the residue, degradation and distribution of the herbicides (simazine, atrazine, terbuthylazine, acetochlor and metolachlor) and the enantioselectivity of acetochlor in sediment and water-sediment microcosm system were investigated. Sediment was spiked with norfloxacin and water was contaminated by herbicides to simulate environmental pollution. The amounts of herbicides in water and sediment samples were analyzed within 30 days of cultivation. The results showed that norfloxacin could significantly inhibit the dissipation, lengthen the half-lives and enhance the residues of herbicides in sediment. Take simazine as an example, its half-life significantly increased from 16.1 days to 19.3 days and its residual percentage grew from 24.2% to 30.4% when sediment was contaminated with 5 mg·kg norfloxacin. However, only acetochlor degradation was significantly inhibited by norfloxacin in water-sediment microcosm and the distribution of the herbicides were not affected. Enantioselective degradation of acetochlor was observed both in control and norfloxacin-treated water-sediment system, with R-acetochlor preferential elimination, suggesting the co-existence of norfloxacin had very limited influence on the enantioselectivity. The findings indicated that co-contamination with norfloxacin could increase the persistence of herbicides in aquatic environment, thus increasing the environmental risks to aquatic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111717 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!