A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment. | LitMetric

Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment.

Ecotoxicol Environ Saf

Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China. Electronic address:

Published: January 2021

Antibiotics are currently extensively used in human medicine, animal farming, agriculture and aquaculture, and their residue has become a global environmental problem. However, the effects of antibiotic on other pollutants in aquatic environment are still poorly understood. In this study, the influences of norfloxacin on the residue, degradation and distribution of the herbicides (simazine, atrazine, terbuthylazine, acetochlor and metolachlor) and the enantioselectivity of acetochlor in sediment and water-sediment microcosm system were investigated. Sediment was spiked with norfloxacin and water was contaminated by herbicides to simulate environmental pollution. The amounts of herbicides in water and sediment samples were analyzed within 30 days of cultivation. The results showed that norfloxacin could significantly inhibit the dissipation, lengthen the half-lives and enhance the residues of herbicides in sediment. Take simazine as an example, its half-life significantly increased from 16.1 days to 19.3 days and its residual percentage grew from 24.2% to 30.4% when sediment was contaminated with 5 mg·kg norfloxacin. However, only acetochlor degradation was significantly inhibited by norfloxacin in water-sediment microcosm and the distribution of the herbicides were not affected. Enantioselective degradation of acetochlor was observed both in control and norfloxacin-treated water-sediment system, with R-acetochlor preferential elimination, suggesting the co-existence of norfloxacin had very limited influence on the enantioselectivity. The findings indicated that co-contamination with norfloxacin could increase the persistence of herbicides in aquatic environment, thus increasing the environmental risks to aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111717DOI Listing

Publication Analysis

Top Keywords

aquatic environment
12
effects antibiotic
8
norfloxacin
8
herbicides aquatic
8
distribution herbicides
8
water-sediment microcosm
8
herbicides
7
sediment
5
antibiotic norfloxacin
4
degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!