Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis.

Environ Int

Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain. Electronic address:

Published: January 2021

Background: South Asia is highly vulnerable to climate change and is projected to experience some of the highest increases in average annual temperatures throughout the century. Although the adverse impacts of ambient temperature on human health have been extensively documented in the literature, only a limited number of studies have focused on populations in this region.

Objectives: Our aim was to systematically review the current state and quality of available evidence on the direct relationship between ambient temperature and heat waves and all-cause mortality in South Asia.

Methods: The databases Pubmed, Web of Science, Scopus and Embase were searched from 1990 to 2020 for relevant observational quantitative studies. We applied the Navigation Guide methodology to assess the strength of the evidence and performed a meta-analysis based on a novel approach that allows for combining nonlinear exposure-response associations without access to data from individual studies.

Results: From the 6,759 screened papers, 27 were included in the qualitative synthesis and five in a meta-analysis. Studies reported an association of all-cause mortality with heat wave episodes and both high and low daily temperatures. The meta-analysis showed a U-shaped pattern, with increasing mortality for both high and low temperatures, but a statistically significant association was found only at higher temperatures - above 31° C for lag 0-1 days and above 34° C for lag 0-13 days. Effects were found to vary with cause of death, age, sex, location (urban vs. rural), level of education and socio-economic status, but the profile of vulnerabilities was somewhat inconsistent and based on a limited number of studies. Overall, the strength of the evidence for ambient temperature as a risk factor for all-cause mortality was judged as limited and for heat wave episodes as inadequate.

Conclusions: The evidence base on temperature impacts on mortality in South Asia is limited due to the small number of studies, their skewed geographical distribution and methodological weaknesses. Understanding the main determinants of the temperature-mortality association as well as how these may evolve in the future in a dynamic region such as South Asia will be an important area for future research. Studies on viable adaptation options to high temperatures for a region that is a hotspot for climate vulnerability, urbanisation and population growth are also needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.106170DOI Listing

Publication Analysis

Top Keywords

ambient temperature
16
south asia
16
mortality south
12
number studies
12
all-cause mortality
12
temperature heat
8
heat waves
8
limited number
8
strength evidence
8
heat wave
8

Similar Publications

A tandem catalytic ensemble of solid-state molecular organometallic (SMOM) crystalline pre-catalysts are deployed under batch or flow conditions for the ethene to propene process (ETP). These catalysts operate at ambient temperature and low pressure, via sequential ethene dimerization, butenes isomerization and cross-metathesis. Under flow conditions the on-stream ethene conversion (55%), initial propene selectivity (92%), stability (71% selectivity after 7 hrs) and low temperature/pressures are competitive with the best-in-class heterogenous systems, marking a new, in crystallo, approach to ETP.

View Article and Find Full Text PDF

Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.

View Article and Find Full Text PDF

This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.

View Article and Find Full Text PDF

Association between ambient temperature and couple fecundity: Insights from a large-scale cohort study in Yunnan, China.

Int J Hyg Environ Health

January 2025

NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China. Electronic address:

Background: Direct evidence linking ambient temperature to human fecundity is sparse. We aimed to evaluate the potential impact of ambient temperature on time to pregnancy (TTP) and identify the optimal temperature range for initiating conception attempts.

Methods: Our analysis included 576 927 couples from the Chinese National Free Preconception Health Examination Project (NFPHEP) in Yunnan Province, with a one-year follow-up post-enrollment.

View Article and Find Full Text PDF

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!