Targeted protein degradation has emerged as a new paradigm to manipulate cellular proteostasis. Proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit an E3 ligase to a target protein of interest, promoting its ubiquitination and subsequent degradation. Here, we report the development of antibody-based PROTACs (AbTACs), fully recombinant bispecific antibodies that recruit membrane-bound E3 ligases for the degradation of cell-surface proteins. We show that an AbTAC can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43. AbTACs represent a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154509 | PMC |
http://dx.doi.org/10.1021/jacs.0c10008 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA. Electronic address:
Here, we investigated the relationship between the attenuation of lung cancer growth due to oral administration of Euglena gracilis water extract (EWE) and T cell stimulation. Orally administered EWE was revealed to increase PD-1 and PD-L1 mRNA and proteins primarily in tumor-infiltrating lymphocytes (TILs), which was correlated with a significant decrease in the tumor weights in mice. A combination treatment with EWE and anti-PD-1 antibody significantly decreased the growth of murine lung tumors more than treatment with either alone by increasing the number of TILs and attenuating T cell exhaustion.
View Article and Find Full Text PDFAnal Chem
January 2025
The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.
View Article and Find Full Text PDFChemMedChem
January 2025
National Institute of Standards and Technology, Material Measurement Laboratory, UNITED STATES OF AMERICA.
Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype characterized by aggressive clinical behavior and poor prognosis. The immune landscape associated with TNBC often reveals high immunogenicity. Therefore, immunotherapy, which has demonstrated its efficacy in different cancer types, could be a promising strategy for TNBC, given the limited therapeutic options currently available besides conventional chemotherapy.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!