Capillary Bridges on Liquid-Infused Surfaces.

Langmuir

Department of Physics, Durham University, Durham DH1 3LE, U.K.

Published: January 2021

We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid-infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on noninfused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in contact with two, one, or none of the LIS substrates. In addition, the capillary bridges may lose stability when compressed due to the envelopment of the droplet by the lubricant. We also characterize the capillary force, maximum separation, and effective spring force and find that they are influenced by the shape and size of the lubricant ridge. Importantly, these can be tuned to increase the effective capillary adhesion strength by manipulating the lubricant pressure, Neumann angle, and wetting contact angles. As such, LIS are not only "slippery" parallel to the surface, but they are also "sticky" perpendicular to the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03220DOI Listing

Publication Analysis

Top Keywords

capillary bridges
16
liquid-infused surfaces
8
liquid droplet
8
capillary
6
bridges liquid-infused
4
surfaces numerically
4
numerically study
4
study two-component
4
two-component capillary
4
bridges
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!