Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient-limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10-year-old  Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow-weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ N-NO , indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2- to 10-fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant-mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15507DOI Listing

Publication Analysis

Top Keywords

burned watersheds
16
tundra wildfire
12
lateral nutrient
12
higher organic
12
nutrient loss
8
burned unburned
8
unburned watersheds
8
organic nutrients
8
watersheds
7
organic
7

Similar Publications

Article Synopsis
  • Climate change is leading to more frequent and intense wildfires, particularly in areas experiencing prolonged summer droughts.
  • This study focused on how mercury (Hg) is transported in water from recently burned and unburned watersheds in northern California, analyzing its forms during storm events and normal flow.
  • Findings indicate that the aftermath of wildfires causes a temporary spike in suspended solids and mercury levels, linked primarily to ash deposits, but these levels decrease significantly with the rapid regrowth of vegetation over time.
View Article and Find Full Text PDF

Different impacts of natural and anthropogenic factors on dissolved organic matter chemistry in coastal rivers: Implications for water management.

J Environ Manage

September 2024

The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China. Electronic address:

The chemical composition of dissolved organic matter (DOM) exerts significant influence on aquatic energy dynamics, pollutant transportation, and carbon storage, thereby playing pivotal roles in the local water quality and regional-global biogeochemical cycling. However, the effects of natural climate change and local human activities on watershed characteristics and in-river processes have led to uncertainties regarding their contributions to DOM chemistry in coastal rivers, creating challenges for effective water management and the study of organic matter cycling. In this investigation, we employed a combination of stable isotopic analysis, optical techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to elucidate the sources, optical properties, and molecular composition of DOM in three South China coastal rivers.

View Article and Find Full Text PDF

Wildfire disturbance propagation along fluvial networks remains poorly understood. We use incident, atmospheric, and water-quality data from the largest wildfire in New Mexico's history to quantify how this gigafire affected surface runoff processes and mobilized wildfire disturbances into fluvial networks after burning 1382 km. Surface runoff post-fire increased compared to pre-fire conditions, and precipitation events that are frequently observed in the affected watershed (<2-year recurrence) and fell during the post-fire first rainy season resulted in uncorrelated, less frequently observed runoff events (10-year recurrence).

View Article and Find Full Text PDF

Though climate change and its adverse ecological and geohydrological impacts are being experienced across the world in all types of ecosystems but as far as the Himalaya mountain ecosystem is concerned, the rate of climate change and subsequent impacts have reached an alarming stage due to anthropogenic and technogenic intervention on natural process and now need most effective and less time taking management strategy. Addressing this burning environmental problem, a geospatial artificial intelligence (GeoAI) technique-based case study is presented here from one of the most densely populated and urbanized regions of Himalaya mountain, viz Uttarakhand Himalaya, which is also called central Himalaya. The results of the study suggest that due to quite a high rate of climate change, the climatic zones shifting towards higher altitudes at the average rate of 5.

View Article and Find Full Text PDF

The increasing frequency and severity of wildfires are among the most visible impacts of climate change. However, the effects of wildfires on mercury (Hg) transformations and bioaccumulation in stream ecosystems are poorly understood. We sampled soils, water, sediment, in-stream leaf litter, periphyton, and aquatic invertebrates in 36 burned (one-year post fire) and 21 reference headwater streams across the northwestern U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!