Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arbuscular mycorrhizal fungus (AMF) is generally colonized in plant roots and influences the migration of mineral elements such as nitrogen (N) in soils. However, its effect on N leaching loss in red soils is limited. In the present study, red soils were collected from wasteland, farmland, and slopeland in the Yunnan Plateau. Maize, as a host plant, was cultured in a dual-compartment cultivation system. There were mycorrhizal and hyphal compartments for the AMF inoculation treatment and root and soil compartments for the non-inoculation treatment. The N concentration and uptake in maize, N concentration in pore water within two depth (0-20 and 20-40 cm), and N leaching losses from soil under simulated heavy rainfall (40 and 80 mm/h) were analyzed. Results showed that AMF inoculation significantly enhanced the biomass and N uptake in maize. Compared with the root and soil compartments, the N concentrations in pore water and their leaching losses from the mycorrhizal and hyphal compartments were decreased by 48-77% and 51-74%, respectively. Moreover, significant or extremely significantly positive correlations were observed between the N concentrations in pore water with the N leaching losses from soil. The three-way ANOVA showed that AMF highly significantly decreased N concentrations in pore water and their leaching losses from wasteland, farmland, and slopeland; rainfall intensity had strong influences on the N concentration in pore water from farmland and N leaching losses from wasteland and farmland, whereas the maize root's effect was insignificant. The study indicated that the AMF-induced decreases in the N leaching loss from red soils were caused by increased N uptake by maize and decreased N concentrations in pore water. These results have implications for reducing nutrient leaching loss through the management of beneficial microorganisms in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-12131-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!