The favorable effect of simvastatin on pulmonary arterial hypertension (PAH) has been well defined despite the unknown etiology of PAH. However, whether simvastatin exerts similar effects on PAH induced right heart failure (RHF) remains to be determined. We aimed to investigate the function of simvastatin in PAH induced RHF. Rats in the RHF and simvastatin groups were injected intraperitoneally with monocrotaline to establish PAH-induced RHF model. The expression of miR-21-5p in rat myocardium was detected and miR-21-5p expression was inhibited using antagomiRNA. The effect of simvastatin on hemodynamic indexes, ventricular remodeling of myocardial tissues, myocardial energy metabolism, and calmodulin was explored. Dual-luciferase reporter system was used to verify the binding relationship between miR-21-5p and Smad7. In addition, the regulatory role of simvastatin in Smad7, TGFBR1 and Smad2/3 was investigated. Simvastatin treatment improved hemodynamic condition, myocardial tissue remodeling, and myocardial energy metabolism, as well as increasing calmodulin expression in rats with PAH-induced RHF. After simvastatin treatment, the expression of miR-21-5p in myocardium of rats was decreased significantly. miR-21-5p targeted Smad7 and inhibited the expression of Smad7. Compared with RHF rats, the expressions of TGFBR1 and Smad2/3 in myocardium of simvastatin-treated rats were decreased significantly. Collectively, we provided evidence that simvastatin can protect ATPase activity and maintain myocardial ATP energy reserve through the miR-21-5p/Smad/TGF-β axis, thus ameliorating PAH induced RHF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-020-09867-z | DOI Listing |
EClinicalMedicine
January 2025
University of Paris Cité, Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), Paris, France.
Background: Cardiogenic shock (CS) is a heterogeneous clinical syndrome, making it challenging to predict patient trajectory and response to treatment. This study aims to identify biological/molecular CS subphenotypes, evaluate their association with outcome, and explore their impact on heterogeneity of treatment effect (ShockCO-OP, NCT06376318).
Methods: We used unsupervised clustering to integrate plasma biomarker data from two prospective cohorts of CS patients: CardShock (N = 205 [2010-2012, NCT01374867]) and the French and European Outcome reGistry in Intensive Care Units (FROG-ICU) (N = 228 [2011-2013, NCT01367093]) to determine the optimal number of classes.
Nat Commun
January 2025
Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China.
Physical exercise is a cornerstone for preventing diet-induced obesity, while it is unclear whether physical exercise could offset high-fat, high-calories diet (HFCD)-induced cardiac dysfunction. Here, mice were fed with HFCD and simultaneously subjected to physical exercise. As expected, physical exercise prevented HFCD-induced whole-body fat deposition.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre of Cardiovascular Diseases and Internal Medicine, Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary.
Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.
View Article and Find Full Text PDFChronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!