Purpose: Endophthalmitis models have reported the virulent role of Panton-Valentine leucocidin (PVL) secreted by Staphylococcus aureus on the retina. PVL targets retinal ganglion cells (RGCs), expressing PVL membrane receptor C5aR. Interactions between PVL and retinal cells lead to glial activation, retinal inflammation, and apoptosis. In this study, we explored oxidative stress and retinal neurotransmitters in a rabbit retinal explant model incubated with PVL.
Methods: Reactive oxygen species (ROS) production in RGCs has been assessed with fluorescent probes and immunohistochemistry. Nuclear magnetic resonance (NMR) spectroscopy quantified retinal concentrations of antioxidant molecules and neurotransmitters, and concentrations of neurotransmitters released in the culture medium. Quantifying the expression of some pro-inflammatory and anti-inflammatory factors was performed using RT-qPCR.
Results: PVL induced a mitochondrial ROS production in RGCs after four hours' incubation with the toxin. Enzymatic sources of ROS, involving nicotinamide adenine dinucleotide phosphate-oxidase and xanthine oxidase, were also activated after four hours in PVL-treated retinal explants. Retinal antioxidants defenses, that is, glutathione, ascorbate and taurine, decreased after two hours' incubation with PVL. Glutamate retinal concentrations and glutamate release in the culture medium remained unaltered in PVL-treated retinas. GABA, glycine, and acetylcholine (Ach) retinal concentrations decreased after PVL treatment. Glycine release in the culture medium decreased, whereas Ach release increased after PVL treatment. Expression of proinflammatory and anti-inflammatory cytokines remained unchanged in PVL-treated explants.
Conclusions: PVL activates oxidative pathways and alters neurotransmitter retinal concentrations and release, supporting the hypothesis that PVL could induce a neurogenic inflammation in the retina.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794257 | PMC |
http://dx.doi.org/10.1167/iovs.62.1.4 | DOI Listing |
Alzheimers Dement
December 2024
University of Milano - Bicocca, Monza, Monza, Italy, iCAB International Network, University of Milano - Bicocca, Monza, Italy.
ARIA-E/H (amyloid-related imaging abnormalities-Edema/Hemorrhage) is an umbrella term that defines the radiographic appearance of MRI images abnormality during treatments with Aβ-lowering monoclonal antibodies (mAbs) for Alzheimer's disease immunotherapy. Today, it is well-recognized that ARIA-E events can also occur spontaneously in patients with cerebral amyloid angiopathy-related inflammation (CAA-ri), a rare autoimmune encephalopathy associated with raised cerebrospinal fluid (CSF) concentrations of spontaneous auto-antibodies against Aβ (aAbs). In this framework, the last years of research and experience of the iCAB international Network generated an increased consensus that therapy-induced ARIA is the iatrogenic manifestation of CAA-ri.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).
View Article and Find Full Text PDFElife
January 2025
Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States.
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them.
View Article and Find Full Text PDFIn Vivo
December 2024
Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!