This study investigated the broadband terahertz and low-frequency Raman spectroscopy of liquid water (HO, DO, and HO) over 2 decades of frequency to address long-standing challenges regarding the interpretation of the intermolecular stretching mode at around 5 THz. We experimentally demonstrated that the intermolecular stretching mode of liquid water obtained via terahertz spectroscopy is significantly redshifted and broadened compared with that via Raman. This result was rationalized by the enhanced dynamical collectivity probed by terahertz spectroscopy, although both have a common origin in the kinetic motion. Their temperature and isotope dependences emphasize the significance of oscillation mass in determining the intermolecular stretching lineshape, while quantum effects cannot be overlooked in both terahertz and low-frequency Raman spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c10154 | DOI Listing |
ACS Omega
December 2024
Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Structurally knowing the active sites of a drug is important for understanding its therapeutic functions. S086 is a novel angiotensin receptor-neprilysin inhibitor that consists of the molecular moieties of EXP3174 (the active metabolite of the angiotensin receptor blocker losartan) and sacubitril (a neprilysin inhibitor prodrug) in a 1:1 molar ratio. There are two forms of cocrystals of S086, namely, ξ-crystal and α-crystal, which were formed both via intermolecular coordination bonding to calcium ions, with the aid of internal water.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
In this computational work we study complexes with two equivalent intermolecular hydrogen bonds formed between trimethyl phosphine oxide and two identical proton donors ("twin" hydrogen bonds) for a set of 70 proton donor molecules. The changes in the phosphorus chemical shift and stretching frequency of the PO group upon complexation correlate quite well with the total strength of two hydrogen bonds. A set of explicit numerical dependences is proposed for assessing interatomic distances and hydrogen bond strengths from spectral data.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Correlated molecular motion during the process of residual stress release in polymer glassy films is studied at the single-molecule level. Using poly(-butyl methacrylate) (PnBMA) and poly(vinyl acetate) (PVAc) as the model polymers, thin films fabricated by spin-casting without thermal annealing were chosen as samples for investigation. Single-molecule fluorescence defocused microscopy was used to track the rotational motion of the fluorescent probes doped inside the polymer films.
View Article and Find Full Text PDFNanophotonics
June 2024
Schulich Faculty of Chemistry, Solid State Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Strong coupling between the molecular vibrations and electromagnetic fields of light confined to an infrared cavity leads to the formation of vibro-polaritons - quasi-particles thought to provide the means to control the rates of chemical reactions inside a dark cavity. Despite the mechanisms indicating how vibrational coupling to the vacuum fields can affect the reaction rates are still not well understood, it has been recently demonstrated that the formation of the polariton states alters the ultrafast relaxation dynamics of the strongly coupled system. The relaxation dynamics in molecules, which is known to be important for the chemical reactivity, is directed by anharmonic couplings involving multiple intra- and inter-molecular vibrational degrees of freedom.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
To improve the defective processing of barley fermented dough, this study constructed barley model dough using reconstituted hordein/glutelin ratios (75:25, 50:50, and 25:75) and elucidated its regulatory roles and potential mechanisms. SEM and CLSM results showed that increasing the hordein ratio improved the continuity and completion of the reconstituted gluten network compared to Control, thus allowing the gluten to stretch and elongate during fermentation. Also, LF-NMR revealed that the water distribution of the reconstituted system tended to shift from a free to a bound state, contributing to water retention during the dough hydration phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!