AI Article Synopsis

  • Detecting and quantifying bacterial endotoxins is crucial in health contexts like pharmaceutical production and vaccines.
  • The study utilizes nematic liquid crystalline droplets and machine learning to distinguish between different bacterial sources (E. coli, P. aeruginosa, S. minnesota) and measure endotoxin levels efficiently.
  • A convolutional neural network named EndoNet analyzes data from flow cytometry, predicting endotoxin source and concentration by interpreting changes in light scattering caused by the interaction with the liquid crystal droplets, potentially offering a simpler alternative to traditional methods.

Article Abstract

Detection and quantification of bacterial endotoxins is important in a range of health-related contexts, including during pharmaceutical manufacturing of therapeutic proteins and vaccines. Here we combine experimental measurements based on nematic liquid crystalline droplets and machine learning methods to show that it is possible to classify bacterial sources (Escherichia coli, Pseudomonas aeruginosa, Salmonella minnesota) and quantify concentration of endotoxin derived from all three bacterial species present in aqueous solution. The approach uses flow cytometry to quantify, in a high-throughput manner, changes in the internal ordering of micrometer-sized droplets of nematic 4-cyano-4'-pentylbiphenyl triggered by the endotoxins. The changes in internal ordering alter the intensities of light side-scattered (SSC, large-angle) and forward-scattered (FSC, small-angle) by the liquid crystal droplets. A convolutional neural network (Endonet) is trained using the large data sets generated by flow cytometry and shown to predict endotoxin source and concentration directly from the FSC/SSC scatter plots. By using saliency maps, we reveal how EndoNet captures subtle differences in scatter fields to enable classification of bacterial source and quantification of endotoxin concentration over a range that spans eight orders of magnitude (0.01 pg mL-1 to 1 μg mL-1). We attribute changes in scatter fields with bacterial origin of endotoxin, as detected by EndoNet, to the distinct molecular structures of the lipid A domains of the endotoxins derived from the three bacteria. Overall, we conclude that the combination of liquid crystal droplets and EndoNet provides the basis of a promising analytical approach for endotoxins that does not require use of complex biologically-derived reagents (e.g., Limulus amoebocyte lysate).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0an02220aDOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
crystal droplets
12
machine learning
8
bacterial species
8
derived three
8
flow cytometry
8
changes internal
8
internal ordering
8
scatter fields
8
bacterial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!