We present a basis-set-free approach to the variational quantum eigensolver using an adaptive representation of the spatial part of molecular wave functions. Our approach directly determines system-specific representations of qubit Hamiltonians while fully omitting globally defined basis sets. In this work, we use directly determined pair-natural orbitals on the level of second-order perturbation theory. This results in compact qubit Hamiltonians with high numerical accuracy. We demonstrate initial applications with compact Hamiltonians on up to 22 qubits where conventional representation would for the same systems require 40-100 or more qubits. We further demonstrate reductions in the quantum circuits through the structure of the pair-natural orbitals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c03410 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:
The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.
View Article and Find Full Text PDFMolecules
December 2024
Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Campus Reitor Edgard Santos, Rua Bertioga, 892, Morada Nobre I, Barreiras 47810-059, BA, Brazil.
The Variational Quantum Eigensolver (VQE) is a hybrid algorithm that combines quantum and classical computing to determine the ground-state energy of molecular systems. In this context, this study applies VQE to investigate the ground state of protocatechuic acid, analyzing its performance with various Ansatzes and active spaces. Subsequently, all VQE results were compared to those obtained with the CISD and FCI methods.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
Traditionally, excitation energies in coupled-cluster (CC) theory have been calculated by solving the CC Jacobian eigenvalue equation. However, based on our recent work [Jørgensen et al., Sci.
View Article and Find Full Text PDFNat Commun
January 2025
Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.
Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!