Multiple potential roles of thymosin β4 in the growth and development of hair follicles.

J Cell Mol Med

Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Published: February 2021

The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin β4 (Tβ4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tβ4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tβ4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tβ4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tβ4 in HF growth and development and describe the endogenous and exogenous actions of Tβ4 in HFs to provide insights into the roles of Tβ4 in HF growth and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875905PMC
http://dx.doi.org/10.1111/jcmm.16241DOI Listing

Publication Analysis

Top Keywords

growth development
24
thymosin β4
8
hair follicles
8
types cells
8
migration differentiation
8
differentiation stem
8
mechanisms tβ4
8
tβ4 growth
8
growth
7
tβ4
7

Similar Publications

People with HIV (PWH) are living longer and experiencing a greater burden of morbidity from non-AIDS-defining conditions. Chronically treated HIV disease is associated with ongoing systemic inflammation that contributes to the development of chronic conditions (eg, cardiovascular disease) and geriatric syndromes (eg, frailty). Apart from HIV disease, a progressive increase in systemic inflammation is a characteristic feature of biologic aging, a process described as "inflammaging.

View Article and Find Full Text PDF

Weight gain among persons with HIV PWH) on contemporary antiretroviral therapy (ART) can extend beyond an initial return-to-health phenomenon and lead to overweight/obesity in the first 1 to 2 years, resulting in enhanced cardiometabolic risk. Factors that may contribute to increased weight gain include specific ART regimens (those initiating dolutegravir and tenofovir alafenamide or withdrawing tenofovir disoproxil and efavirenz), women with HIV, and certain virologic factors including lower baseline CD4 count and higher HIV viral load. Weight reduction starting at 5% body weight confers metabolic protection, such as improved hypertension and dysglycemia.

View Article and Find Full Text PDF

In toto biological framework: Modeling interconnectedness during human development.

Dev Cell

January 2025

Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Electronic address:

Recent advancements in pluripotent stem cell and synthetic tissue technology have brought significant breakthroughs in studying early embryonic development, particularly within the first trimester of development in humans. However, during fetal stage development, investigating further biological events represents a major challenge, partly due to the evolving complexity and continued interaction across multiple organ systems. To bridge this gap, we propose an "in toto" biological framework that leverages a triad of technologies: synthetic tissues, intravital microscopy, and computer vision to capture in vivo cellular morphodynamics, conceptualized as single-cell choreography.

View Article and Find Full Text PDF

How structural interactions and receptor phosphorylation shape strigolactone signaling in rice.

Dev Cell

January 2025

The BioActives Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. Electronic address:

The phytohormone strigolactone (SL) regulates various developmental processes and plant adaptation to nutrient availability, which in turn regulates strigolactone biosynthesis. In the recent issue of Cell, Hu et al. advance the understanding of the interaction of the SL receptor complex and reveal exciting insights into the nitrogen-dependent regulation of SL signaling and SL-dependent tillering in rice.

View Article and Find Full Text PDF

Lineage tracing senescence in vivo shows not all senescent cells are created equal.

Dev Cell

January 2025

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Understanding the impact of senescence on disease is limited by the lack of tools to lineage label senescent cells. In a recent Cell issue, Zhao et al. create mouse models to genetically manipulate and trace p16 cells, identifying contrasting roles for senescent macrophages and endothelial cells (ECs) in liver fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!