Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies have shown that long non-coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP). Rat models of OP were established. MEG3, miR-214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual-luciferase reporter gene and RNA-pull down assays verified the targeting relationship between MEG3, miR-214 and TXNIP. MEG3 and TXNIP were up-regulated while miR-214 was down-regulated in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down-regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL-I and COL-Χ expression and ALP activity, and reduced COL-II expression of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP. MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by down-regulating TXNIP, which further improves OP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882928 | PMC |
http://dx.doi.org/10.1111/jcmm.16096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!