Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sewers can become hydraulically overburdened during high-intensity precipitation resulting in untreated water entering receiving streams. Combined (CSOs) and sanitary sewer overflows (SSOs) cause adverse public health and environmental impacts as well as management challenges for many wastewater utilities. This novel review presents information regarding wet weather flow regulation, impacts, and current management methods, and offers ideas for future approaches in the United States. Currently, storage followed by conventional municipal water reclamation facility treatment after precipitation events is often employed. Stand-alone alternative technologies include high-rate solids removal, rapid disinfection, filtration, and green infrastructure. However, most current stand-alone approaches do not address soluble BOD or emerging contaminants in stormwater and wastewater. As the needs for wet weather flow management change, future approaches should include a goal of zero overflows and achieve effluent quality as good as or better than conventional treatment. To help achieve zero overflows and complete treatment, the "peaker facility" concept is proposed. The peaker facility often remains idle but treats excess flow when needed. Considering the challenges of remaining idle for long periods, starting up quickly, and handling high flows, chemical oxidation may be an applicable peaker facility component. However, more research and development are needed to determine best practices. PRACTITIONER POINTS: Combined (CSO) and sanitary sewer overflows (SSOs) pose both environmental and public health risks as untreated water is discharged into lakes and rivers during high-intensity rain events. Current stand-alone approaches for managing or treating CSOs focus on particulate BOD/COD and solids removal, and do not typically address soluble BOD or emerging contaminants in stormwater and wastewater (including pathogens). New wet weather policies and regulations encourage more holistic approaches by wastewater utilities, and future approaches should include a zero-overflow goal for all CSOs and SSOs. To help achieve zero overflows, the concept of the "peaker facility" is proposed. Chemical oxidation may be an applicable component of peaker facilities for its short detention time and ability to remove, oxidize, or inactive water impairment-causing contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.1506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!