Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU). Bacterial coinfection has been reported to be rare. We aimed at describing the rate of bacterial coinfection in critically ill adult patients with severe COVID-19 pneumonia. All the patients with laboratory-confirmed severe COVID-19 pneumonia admitted to the ICU of Tenon University-teaching hospital, from February 22 to May 7th, 2020 were included. Respiratory tract specimens were obtained within the first 48 h of ICU admission. During the study period, 101 patients were referred to the ICU for COVID-19 with severe pneumonia. Most patients (n = 83; 82.2%) were intubated and mechanically ventilated on ICU admission. Overall, 20 (19.8%) respiratory tract specimens obtained within the first 48 h. Staphylococcus aureus was the main pathogen identified, accounting for almost half of the early-onset bacterial etiologies. We found a high prevalence of early-onset bacterial coinfection during severe COVID-19 pneumonia, with a high proportion of S. aureus. Our data support the current WHO guidelines for the management of severe COVID-19 patients, in whom antibiotic therapy directed to respiratory pathogens is recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779094 | PMC |
http://dx.doi.org/10.1007/s15010-020-01553-x | DOI Listing |
Viruses
January 2025
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.
View Article and Find Full Text PDFPathogens
January 2025
Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
Scrub typhus, caused by , is a neglected and reemerging disease that causes considerable morbidity and mortality. It now extends beyond the Tsutsugamushi Triangle, the region wherein it has traditionally been endemic. Influenza has also resurged since the infection control measures against COVID-19 were relaxed.
View Article and Find Full Text PDFPathogens
December 2024
Department of Parasitology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic.
Bartonellae are zoonotic pathogens with a broad range of reservoir hosts and vectors. To examine sylvatic reservoirs, tissue samples of red deer (, = 114) and their associated deer keds (, = 50; , = 272) collected in the Czech Republic were tested for the presence of using PCR at four loci (, , , ITS); PCR sensitivity was increased significantly by using primers modified for the detection of wildlife-associated bartonellae. One-third of the deer and 70% of the deer keds were positive; within the tested animal tissues, usually the spleen was positive.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy.
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.
and are opportunistic pathogens that cause severe infections in hospitals, and their co-infections are increasingly reported. The interspecies interactions between these two bacterial species and their potential impacts on infections are largely unexplored. In this study, we first demonstrated that inhibits the growth of by iron chelating via quorum sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!