Comparing predictive ability of QSAR/QSPR models using 2D and 3D molecular representations.

J Comput Aided Mol Des

Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.

Published: February 2021

Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) models predict biological activity and molecular property based on the numerical relationship between chemical structures and activity (property) values. Molecular representations are of importance in QSAR/QSPR analysis. Topological information of molecular structures is usually utilized (2D representations) for this purpose. However, conformational information seems important because molecules are in the three-dimensional space. As a three-dimensional molecular representation applicable to diverse compounds, similarity between a test molecule and a set of reference molecules has been previously proposed. This 3D representation was found to be effective on virtual screening for early enrichment of active compounds. In this study, we introduced the 3D representation into QSAR/QSPR modeling (regression tasks). Furthermore, we investigated relative merits of 3D representations over 2D in terms of the diversity of training data sets. For the prediction task of quantum mechanics-based properties, the 3D representations were superior to 2D. For predicting activity of small molecules against specific biological targets, no consistent trend was observed in the difference of performance using the two types of representations, irrespective of the diversity of training data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-020-00361-7DOI Listing

Publication Analysis

Top Keywords

molecular representations
8
diversity training
8
training data
8
data sets
8
representations
6
molecular
5
comparing predictive
4
predictive ability
4
ability qsar/qspr
4
qsar/qspr models
4

Similar Publications

Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity.

Brief Bioinform

November 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings.

View Article and Find Full Text PDF

Future Directions in the Treatment of Low-Grade Gliomas.

Cancer J

January 2025

Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.

There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.

View Article and Find Full Text PDF

In the realm of artificial intelligence-driven drug discovery (AIDD), accurately predicting the influence of molecular structures on their properties is a critical research focus. While deep learning models based on graph neural networks (GNNs) have made significant advancements in this area, prior studies have primarily concentrated on molecule-level representations, often neglecting the impact of functional group structures and the potential relationships between fragments on molecular property predictions. To address this gap, we introduce the multi-scale feature attention graph neural network (MfGNN), which enhances traditional atom-based molecular graph representations by incorporating fragment-level representations derived from chemically synthesizable BRICS fragments.

View Article and Find Full Text PDF

High-altitude adaptation is a remarkable example of natural selection, yet the genomic and physiological adaptation mechanisms of Ethiopian highlanders remain poorly understood compared to their Andean and Tibetan counterparts. Ethiopian populations, such as the Amhara and Oromo, exhibit unique adaptive strategies characterized by moderate hemoglobin levels and enhanced arterial oxygen saturation, indicating distinct mechanisms of coping with chronic hypoxia. This review synthesizes current genomic insights into Ethiopian high-altitude adaptation, identifying key candidate genes involved in hypoxia tolerance and examining the influence of genetic diversity and historical admixture on adaptive responses.

View Article and Find Full Text PDF

RNA plays a crucial role not only in information transfer as messenger RNA during gene expression but also in various biological functions as non-coding RNAs. Understanding mechanical mechanisms of function needs tertiary structure information; however, experimental determination of three-dimensional RNA structures is costly and time-consuming, leading to a substantial gap between RNA sequence and structural data. To address this challenge, we developed NuFold, a novel computational approach that leverages state-of-the-art deep learning architecture to accurately predict RNA tertiary structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!