Bioinformatic, molecular, and biochemical analysis were performed to get more insight into the regulatory mechanism by which TmHKT1;4-A2 is regulated. HKT transporters from different plant species have been shown to play important role in plant response to salt. In previous work, TmHKT1;4-A2 gene from Triticum monococcum has been characterized as a major gene for Nax1 QTL (Tounsi et al. Plant Cell Physiol 57:2047-2057, 2016). So far, little is known about its regulatory mechanism. In this study, the promoter region of TmHKT1;4-A2 (1400 bp) was isolated and considered as the full-length promoter (PA2-1400). In silico analysis revealed the presence of important cis-acting elements related to abiotic stresses and phytohormones. Interestingly, our real-time RT-PCR analysis provided evidence that TmHKT1;4-A2 is regulated not only by salt stress but also by osmotic, heavy metal, oxidative, and hormones stresses. In transgenic Arabidopsis plants, TmHKT1;4-A2 is strongly active in vascular tissues of roots and leaves. Through 5'-end deletion analysis, we showed that PA2-1400 promoter is able to drive strong GUS activity under normal conditions and in response to different stresses compared to PA2-824 and PA2-366 promoters. These findings provide new information on the regulatory mechanism of TmHKT1;4-A2 and shed more light on its role under different stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-020-03533-9DOI Listing

Publication Analysis

Top Keywords

regulatory mechanism
16
deletion analysis
8
insight regulatory
8
mechanism tmhkt14-a2
8
tmhkt14-a2 regulated
8
tmhkt14-a2
7
analysis
5
functional analysis
4
analysis tmhkt14-a2
4
promoter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!