Background: This study aimed to develop a preoperative positron emission tomography (PET)-based radiomics model for predicting occult lymph node metastasis (OLM) in clinical N0 (cN0) solid lung adenocarcinoma.

Methods: The preoperative fluorine-18-fludeoxyglucose (F-FDG) PET images of 370 patients with cN0 lung adenocarcinoma confirmed by histopathological examination were retrospectively reviewed. Patients were divided into training and validation sets. Radiomics features and relevant data were extracted from PET images. A nomogram was developed in a training set via univariate and multivariate logistic analyses, and its performance was assessed by concordance-index (C-index), calibration curves, and decision curve analysis (DCA) in the training and validation sets.

Results: The multivariate logistic regression analysis showed that only carcinoembryonic antigen (CEA), metabolic tumor volume (MTV), and the radiomics signature had statistically significant differences between patients with and without OLM (P<0.05). A nomogram was developed based on the logistic analyses, and its C-index was 0.769 in the training set and 0.768 in the validation set. The calibration curve demonstrated good consistency between the nomogram-predicted probability of OLM and the actual rate. The DCA also confirmed the clinical utility of the nomogram.

Conclusions: A PET/computed tomography (CT)-based radiomics model including CEA, MTV, and the radiomics signature was developed and demonstrated adequate predictive accuracy and clinical net benefit in the present study, and was conveniently used to facilitate the individualized preoperative prediction of OLM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719913PMC
http://dx.doi.org/10.21037/qims-20-337DOI Listing

Publication Analysis

Top Keywords

pet-based radiomics
8
radiomics model
8
model predicting
8
predicting occult
8
occult lymph
8
lymph node
8
node metastasis
8
solid lung
8
lung adenocarcinoma
8
pet images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!