Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing lung injury has been well documented in the literature recently. They do so primarily by binding to the membrane-bound form of angiotensin-converting enzyme 2 (ACE-2) receptors. However, since these receptors are also expressed in the heart and blood vessels, coronavirus can also cause damage to these organs by binding to the ACE-2 receptors. A typical case of coronavirus disease 2019 (COVID-19) usually presents with respiratory symptoms like cough and shortness of breath accompanied by fever. The literature regarding this pandemic has been growing and now we know very well that the effect of this deadly virus is not restricted to the lungs alone. It can, unfortunately, cause various other complications ranging from neurological damage to even myocardial injury in rare cases. We present an interesting case of a 40-year-old male patient who presented to us with shortness of breath. When further investigated, the patient was found to have a new onset of heart failure secondary to COVID-19 induced myocarditis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769783PMC
http://dx.doi.org/10.7759/cureus.11690DOI Listing

Publication Analysis

Top Keywords

covid-19 induced
8
induced myocarditis
8
heart failure
8
ace-2 receptors
8
shortness breath
8
myocarditis rare
4
rare heart
4
failure severe
4
severe acute
4
acute respiratory
4

Similar Publications

A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

Signal Transduct Target Ther

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2. (SARS-CoV-2) and its variant strains, including Alpha, Beta, Gamma, Delta, and now Omicron, pose a significant challenge. With the constant evolution of the virus, Omicron and its subtypes BA.

View Article and Find Full Text PDF

Monocytic reactive oxygen species-induced T cell apoptosis impairs cellular immune response to SARS-CoV-2 mRNA vaccine.

J Allergy Clin Immunol

January 2025

Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:

Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.

Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.

View Article and Find Full Text PDF

Autoantibodies against phosphatidylserine and DNA during canine Dirofilaria immitis infection.

Vet Parasitol

January 2025

Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States; Biology PhD Program, CUNY Graduate Center, New York, NY, United States. Electronic address:

Heartworm infection caused by Dirofilaria immitis induces a devastating disease that greatly affects the global canine population. The mechanism leading to heartworm pathology has been attributed to be mostly by mechanical damage of the worm to the dog´s vascular system and immune-mediated, but the latter processes are not completely understood. Autoantibodies targeting host molecules such as lipids and nucleic acids have been described with pathological roles during malaria and COVID-19 and mediating anemia and thrombocytopenia.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Diverse strategies utilized by coronaviruses to evade antiviral responses and suppress pyroptosis.

Int J Biol Macromol

January 2025

Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China. Electronic address:

Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!