Maternal prenatal exposures, including bisphenol A (BPA), are associated with offspring's risk of disease later in life. Alterations in DNA methylation may be a mechanism through which altered prenatal conditions (e.g. maternal exposure to environmental toxicants) elicit this disease risk. In the Michigan Mother and Infant Pairs Cohort, maternal first-trimester urinary BPA, bisphenol F, and bisphenol S concentrations were tested for association with DNA methylation patterns in infant umbilical cord blood leukocytes ( = 69). We used the Illumina Infinium MethylationEPIC BeadChip to quantitatively evaluate DNA methylation across the epigenome; 822 020 probes passed pre-processing and quality checks. Single-site DNA methylation and bisphenol models were adjusted for infant sex, estimated cell-type proportions (determined using cell-type estimation algorithm), and batch as covariates. Thirty-eight CpG sites [false discovery rate (FDR) <0.05] were significantly associated with maternal BPA exposure. Increasing BPA concentrations were associated with lower DNA methylation at 87% of significant sites. BPA exposure associated DNA methylation sites were enriched for 38 pathways significant at FDR <0.05. The pathway or gene-set with the greatest odds of enrichment for differential methylation (FDR <0.05) was type I interferon receptor binding. This study provides a novel understanding of fetal response to maternal bisphenol exposure through epigenetic change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757124 | PMC |
http://dx.doi.org/10.1093/eep/dvaa021 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFPredicting health trajectories and accurately measuring aging processes across the human lifespan remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is even more elusive, largely due to the intricate, multidimensional nature of aging-a process that defies simple quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging landscape.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Exeter, Exeter, Devon, United Kingdom.
Background: Huntington's disease (HD) is an autosomal dominant condition causing severe neurodegeneration in the striatum and the entorhinal cortex (EC). An epigenome wide association study of DNA methylation in HD by our group, identified potential hypomethylation at the PTGDS gene in the striatum. We aimed to validate this result through pyrosequencing, examining the locus in fine detail, and to assess the signal specificity by profiling multiple neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam UMC, Amsterdam, Netherlands.
Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Exeter, Exeter, Devon, United Kingdom.
Background: Psychosis (broadly delusions and hallucinations) has a cumulative disease prevalence of around 40% in Alzheimer's disease (AD). The epigenomic, genomic, and neuropathological data provide powerful evidence that AD+P has a distinct neurobiological profile. Here, we used the weighted gene co-expression network analysis (WGCNA) method to investigate DNA methylation associated with AD+P in the dorsolateral prefrontal cortex of 153 post-mortem brain samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!