The scale and dynamics of COVID-19 epidemics across Europe.

R Soc Open Sci

South African Centre for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa.

Published: November 2020

The number of COVID-19 deaths reported from European countries has varied more than 100-fold. In terms of coronavirus transmission, the relatively low death rates in some countries could be due to low intrinsic (e.g. low population density) or imposed contact rates (e.g. non-pharmaceutical interventions) among individuals, or because fewer people were exposed or susceptible to infection (e.g. smaller populations). Here, we develop a flexible empirical model (skew-logistic) to distinguish among these possibilities. We find that countries reporting fewer deaths did not generally have intrinsically lower rates of transmission and epidemic growth, and flatter epidemic curves. Rather, countries with fewer deaths locked down earlier, had shorter epidemics that peaked sooner and smaller populations. Consequently, as lockdowns were eased, we expected, and duly observed, a resurgence of COVID-19 across Europe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735356PMC
http://dx.doi.org/10.1098/rsos.201726DOI Listing

Publication Analysis

Top Keywords

smaller populations
8
fewer deaths
8
scale dynamics
4
dynamics covid-19
4
covid-19 epidemics
4
epidemics europe
4
europe number
4
number covid-19
4
covid-19 deaths
4
deaths reported
4

Similar Publications

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

HIV-related mortality has fallen due to scale-up of antiretroviral therapy (ART), so more women living with HIV (WLH) now live to reach menopause. Menopausal estrogen loss causes bone loss, as do HIV and certain ART regimens. However, quantitative bone data from WLH are few in Africa.

View Article and Find Full Text PDF

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Background: As the global population ages, there is an increasing prevalence of mild cognitive impairment and dementia. Protecting and preserving cognitive function in older adults has become a critical public health concern.

Methods: This study utilized data from four phases of the Chinese Longitudinal Healthy Longevity Survey conducted from 2008 to 2018, encompassing a total of 2454 participants.

View Article and Find Full Text PDF

22q11.2 is a region prone to chromosomal rearrangements due to the presence of eight large blocks of low-copy repeats (LCR22s). The 3 Mb 22q11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!