Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772221 | PMC |
http://dx.doi.org/10.3389/fpls.2020.592977 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacy Services, Vocational School of Health Services, Osmaniye Korkut Ata University, Osmaniye, Turkey.
In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.
View Article and Find Full Text PDFSci Rep
December 2024
College of Life sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271016, China.
The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!