Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775495 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.613170 | DOI Listing |
Eur J Pharmacol
December 2024
Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China. Electronic address:
Acne is a prevalent and chronic inflammatory skin disease, and its treatment remains a huge clinical challenge. In the present study, we evaluated the therapeutic potential of combining the peptides RL-QN15 and OH-CATH30 for the treatment of acne in mice. Results indicated that the topical application of RL-QN15 and OH-CATH30 significantly inhibited the proliferation of Propionibacterium acnes (P.
View Article and Find Full Text PDFNeurogastroenterol Motil
December 2024
Postgraduate Program in Oral Sciences, Postgraduate Program in Pharmaceutical Sciences, Department of Biophysical and Pharmacology, Federal University of Rio Grande Norte, Natal, Brazil.
Background: Evaluate the impact of Spondias mombin L. juice (SM), alone and in combination with Lactobacillus acidophilus, in an experimental model of intestinal mucositis.
Methods: Swiss mice were orally administered with saline, SM, or SM combined with L.
Nat Commun
December 2024
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.
View Article and Find Full Text PDFCureus
November 2024
Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, UGA.
Introduction Zinc deficiency (ZnD) impairs the development of acquired immunity and contributes to growth failure in children under five years of age. However, the prevalence of ZnD and its association with immunity in this age group in Uganda have not been well explored. This study aimed to determine the prevalence of ZnD and explore the associations between low serum zinc levels and total white blood cell count, differential cell counts, and levels of IL-1 and IL-2 in children aged 12 to 59 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!