AI Article Synopsis

  • Idiopathic pulmonary fibrosis is a serious lung disease with no known cause, and antifibrotic drugs like pirfenidone are used for treatment, although they can have significant side effects for some patients.
  • Researchers hypothesized that a low-dose form of pirfenidone delivered directly into the lungs could be just as effective as higher doses taken orally.
  • The study found that low-dose intranasal pirfenidone provided similar improvements in lung conditions as high-dose oral pirfenidone, suggesting it could be a powerful treatment option with potentially fewer side effects.

Article Abstract

Idiopathic pulmonary fibrosis is a chronic, progressive, and lethal lung disease of unknown etiology. Antifibrotic drugs, including pirfenidone, are currently used for the treatment of the disease. The oral administration of pirfenidone is an effective therapy, as demonstrated by several clinical trials, although it causes severe adverse events in some patients. We hypothesized that low-dose intrapulmonary delivery of pirfenidone is effective in human transforming growth factorβ1-driven pulmonary fibrosis. To demonstrate our hypothesis, we compared the therapeutic efficacy of varying doses of pirfenidone administered by oral and intranasal routes in a human transforming growth factor-β1 transgenic mouse with established pulmonary fibrosis. We found similar amelioration of lung cell infiltration, inflammatory and fibrotic cytokines, lung fibrosis score, and hydroxyproline content in mice with human transforming growth factor-β1-mediated pulmonary fibrosis treated with low-dose intranasal pirfenidone and high-dose oral pirfenidone. This study showed that pirfenidone is a potent inhibitor of human transforming growth factor-β1-driven lung fibrosis and that intrapulmonary delivery of low-dose pirfenidone produces therapeutic responses equivalent to high-dose of oral pirfenidone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774321PMC
http://dx.doi.org/10.3389/fphar.2020.593620DOI Listing

Publication Analysis

Top Keywords

human transforming
20
transforming growth
20
pulmonary fibrosis
16
lung fibrosis
12
pirfenidone
10
low-dose intrapulmonary
8
growth factorβ1-driven
8
pirfenidone effective
8
intrapulmonary delivery
8
high-dose oral
8

Similar Publications

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

Purpose: The use of social media is transforming physician-patient communication, mainly in the field of medical oncology. The pattern of social media use by medical oncologists is poorly studied. Therefore, we developed a survey to understand the preferences, experiences, opinions, and expectations of Italian medical oncologists and oncology fellows regarding the use of social media in cancer medicine to identify the different profiles of social media users.

View Article and Find Full Text PDF

Aim: To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8).

Background: IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored.

View Article and Find Full Text PDF

Complexities of riverfront development for the hilly city of Paonta Sahib in India.

Environ Sci Pollut Res Int

January 2025

Water Resources Development and Management, Indian Institute of Technology, Roorkee, Uttarakhand, India.

The rapid urbanization, industrial growth, and socio-cultural activities along riverbanks in hilly cities are transforming land use and intensifying water infrastructure challenges. Paonta Sahib, a culturally significant town in Himachal Pradesh on the Yamuna River, along the foothills of the Himalayas exemplifies these pressures due to its religious tourism, industrialization, and mining activities. This study explores sustainable riverfront development at Paonta Sahib, addressing socio-cultural, environmental, and technical concerns essential for eco-sensitive urban planning.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!