Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768999PMC
http://dx.doi.org/10.1134/S1068162020060023DOI Listing

Publication Analysis

Top Keywords

extremophilic micromycetes
12
antibiotic compounds
8
antibiotics extremophilic
4
micromycetes
4
micromycetes extremophilic
4
extremophilic microorganisms
4
microorganisms capable
4
capable functioning
4
functioning extremely
4
extremely high
4

Similar Publications

Diversity of Rock-Inhabiting Fungi in Tarragona Province, Spain.

J Fungi (Basel)

February 2024

Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Tarragona, Spain.

Rock-inhabiting fungi (RIF) are usually extremely tolerant or extremophilic, as they can survive on natural and artificial rocks despite being exposed to stressful conditions. RIF have serious negative effects on the appearance and cohesion of rocky substrates, causing the alteration and decomposition of building materials, but also on human and animal health, as they can act as opportunistic pathogens. Their identification is therefore of great importance, especially in urban areas.

View Article and Find Full Text PDF

Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds.

View Article and Find Full Text PDF

An obligate halophile fungal was isolated from 275 m deep marine sediments and is characterized here for the first time. Its optimal growth was at 15% NaCl even though it was able to grow at 25% and is incapable of growth with no NaCl. Based on its morphological characteristics as conidia chain production in a single phialide, the fungal is related to the genus Aspergillus, subgenus Polypaecilum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!