Use of mineral fertilizers is essential to enhance crop productivity in smallholder farming systems of Sub-Saharan Africa, but various studies have reported 'non-responsiveness' where application of inorganic fertilizers does not lead to satisfactory yield gains. This phenomenon is not well defined nor are its extent and causes well understood. In order to close these knowledge gaps, we assessed the effects of commonly recommended nitrogen (N), phosphorus (P) and/or potassium (K) fertilizer inputs on maize grain and soybean production on farmer fields across prevalent land slope and/or soil texture gradients (2 × 2 matrix) in four agroecosystems over two growing seasons. The extent of the problem in the two cropping systems was compared by decomposing frequency distributions into various ranges of fertilizer effect sizes that represent specific degrees of non-responsiveness and responsiveness. Key soil properties and rainfall variables for field trials were also determined to identify the factors that are limiting crop yield increases by mineral fertilizer input. Significant differences were found in mean fertilizer effect on crop productivity and frequency of non-responsiveness among the study areas and growing seasons, with some explicit contrasts between maize and soybean. The application of mineral fertilizers failed to increase maize yields by more than 0.5 t ha in up to 68 % of farmer fields and soybean yields by more than 150 kg ha in up to 65 % of farmer fields for specific study areas and/or growing seasons, while for others crop responses exceeded those levels. Unlike hypothesized, there were no consistent differences in crop fertilizer responses between the soil texture and land slope classes at any of the study sites. The variation in fertilizer effects on maize grain productivity across the study areas and growing seasons was most strongly related to the soil silt and clay content, and exchangeable cation balances of calcium (Ca), magnesium (Mg) and K, whereas fertilizer effects on soybean were most strongly influenced by the evenness in rainfall during growing seasons, and the soil silt content, extractable P, and ratio of total C and total N. Findings from our study emphasize that non-responsiveness by maize and soybean crops in African smallholder agroecosystems is dependent on multiple interacting factors, and requires careful scrutiny to ensure returns on investments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729825PMC
http://dx.doi.org/10.1016/j.agee.2020.107165DOI Listing

Publication Analysis

Top Keywords

growing seasons
20
maize soybean
12
farmer fields
12
study areas
12
non-responsiveness maize
8
fertilizer
8
african smallholder
8
mineral fertilizers
8
crop productivity
8
maize grain
8

Similar Publications

Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance.

Plant Cell Environ

January 2025

Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.

View Article and Find Full Text PDF

Population blooms of scyphozoan jellyfish in tropical shallow water regions can fuel localized fisheries but also negatively impact human welfare. However, there is a lack of baseline ecological data regarding the scyphozoans in the region, which could be used to manage a fast-growing fishery and mitigate potential impacts. Thus, this study aims to investigate the temporal factors driving the distribution of scyphozoan community along the environmental gradients under different monsoon seasons, rainfall periods, moon phases, and diel-tidal conditions in the Klang Strait located in the central region along the west coast of Peninsular Malaysia, where bloom events are increasing.

View Article and Find Full Text PDF

A central goal of ecosystem restoration is to promote diverse, native-dominated plant communities. However, restoration outcomes can be highly variable. One cause of this variation may be the decisions made during the seed mix design process, such as choosing the number of species to include (sown diversity) or the number of locations each species should be sourced from (source diversity, manipulated to affect genetic diversity).

View Article and Find Full Text PDF

Differential responses of plant and microbial respiration to extreme precipitation and drought during spring and summer in the Eurasian meadow steppe.

Environ Res

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Increasing extreme precipitation and drought events along changes in their seasonal patterns due to climate change are expected to have profound consequences for carbon cycling. However, how these climate extremes impact ecosystem respiration (R) and whether these impacts differ between seasons remain unclear. Here, we reveal the responses of R and its components to extreme precipitation and drought in spring and summer by conducting a five-year manipulative experiment in a temperate meadow steppe.

View Article and Find Full Text PDF

The continuing significance of chiral agrochemicals.

Pest Manag Sci

January 2025

Heinrich-Heine-University Düsseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, Duesseldorf, Germany.

Chemical crop protection is one of the most cost-effective methods for agriculture, as crop failures can be prevented, and sustainable growth can be enabled regardless of the seasons. Agricultural production must be significantly increased in the future to meet the food needs of a growing world population. However, the continued loss of established active ingredients due to consumer perceptions, changing needs of farmers and ever-changing regulatory requirements is higher than annually new active ingredients introduced to the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!