Finite-Element Study of Biomechanical Explanations for Bone Loss around Dental Implants.

J Long Term Eff Med Implants

Laboratory of Mechanical and Physical of Materials (LMPM), Djillali Liabes University, Sidi Bel-Abbes, Algeria; Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh Saudi Arabia.

Published: October 2021

AI Article Synopsis

Article Abstract

Since the advent of osteointegrated implantology and its precepts issued by the Swedish School, assessment of peri-implant bone loss criteria has often been debated by professionals in this field. Long-term success of dental implants is highly reliant on structural and functional osseointegration between implant and surrounding intraoral tissues. In this context, the current study aims to provide biomechanical explanations for causes of bone loss around the dental implant after osseointegration by computational analysis, using a three-dimensional finite-element (FE) method. We design an approximate virtual model that includes the smooth, cylindrical dental implant and alveolar bone. We use SolidWorks software and export to ABAQUS for computational stress analysis at the bone-implant interface. The numerical model is created and loaded with a compressive occlusal force that is applied at the top of the implant platform. We thoroughly investigate the generated FE results and stress responses of the bone-implant system. The developed model is extremely useful for indicating biomechanical phenomena in the bone-implant interface that play a key part in bone loss around the dental implant. In addition, obtained results tend to deliver an improved understanding to designers in the biomedical engineering field and in dentistry.

Download full-text PDF

Source
http://dx.doi.org/10.1615/JLongTermEffMedImplants.2020035028DOI Listing

Publication Analysis

Top Keywords

bone loss
16
loss dental
12
dental implant
12
biomechanical explanations
8
explanations bone
8
dental implants
8
bone-implant interface
8
bone
5
dental
5
implant
5

Similar Publications

Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis.

Nutrients

January 2025

College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.

Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.

View Article and Find Full Text PDF

: Classical reverse shoulder arthroplasty (RSA) with a high neck-shaft angle (NSA) of 155° has shown satisfactory outcomes. However, newer RSA designs aim to improve results by modifying the stem design. This study evaluates the 5-year outcomes of a stem design featuring a rectangular metadiaphyseal fixation and a 135° NSA.

View Article and Find Full Text PDF

Bone mineral density (BMD) is an essential indicator of bone strength and plays a crucial role in the clinical management of various spinal pathologies. Hounsfield units (HUs) calculated from computed tomography (CT) scans are a well-established, effective, and non-invasive method to determine bone density in the lumbar spine when juxtaposed to dual-energy X-ray absorptiometry (DEXA) scans, the gold standard for assessing trabecular bone density. Only recently have studies begun to investigate and establish HUs as a reliable and valid alternative for bone quality assessment in the cervical spine as well.

View Article and Find Full Text PDF

: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.

View Article and Find Full Text PDF

Transalveolar sinus floor elevation (TSFE) is a surgical technique for the placement of dental implants in patients with reduced height of the maxillary posterior alveolar bone. This study aims to demonstrate the clinical outcomes of TSFE using the minimal invasive sinus elevation (MISE) technique in partially and totally edentulous maxillary patients. This prospective clinical study followed STROBE guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!