Landscape patterns have a substantial effect on non-point source (NPS) pollution in watersheds. Facilitating sustainable development of mountain-rural areas is a major priority for China. Knowledge of the impacts of various landscapes on water quality in these areas is critical to meeting environmental goals. This study applied the Soil and Water Assessment Tool (SWAT) to create a hydrologic and water quality model of the study watershed; then, the relationship between water quality and landscape patterns was investigated using multiple linear regression and redundancy analysis. The results show that the western sub-basins had higher nitrogen pollution loads, and the total nitrogen concentration reached a maximum value of 3.91 mg/L; the eastern sub-basins had a higher pollution load of phosphorous featured by maximum total phosphorous concentration of 2.15 mg/L. The water quality of the entire watershed in all scenarios tended to deteriorate over time. Landscape metrics accounted for 81.7% of the total variation in pollutant indicators. The percentage of forest landscape was negatively correlated with NPS pollution, while other types of landscape showed a positive correlation. The patch density, landscape shape index, and largest patch index of urban and agricultural lands were negatively correlated with pollutant concentrations. Upland landscapes contributed more pollutants than paddy fields. Some measures, e.g., returning grassland and farmland to forest in steep regions and replacing upland crops with paddy fields, were recommended for mitigating NPS pollution in the study watershed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-12196-8DOI Listing

Publication Analysis

Top Keywords

water quality
16
nps pollution
12
non-point source
8
landscape patterns
8
study watershed
8
sub-basins higher
8
negatively correlated
8
paddy fields
8
landscape
7
pollution
6

Similar Publications

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

Microbes as Resources to Remove PPCPs and Improve Water Quality.

Microb Biotechnol

January 2025

Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.

The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.

View Article and Find Full Text PDF

This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).

View Article and Find Full Text PDF

Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.

View Article and Find Full Text PDF

Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation.

Water Environ Res

January 2025

Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico.

The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!