AI Article Synopsis

  • Coronaviruses, particularly hCoV-HKU1, are under scrutiny due to their potential to cause mild to severe respiratory illness, as highlighted by the Covid-19 pandemic.
  • The N-terminal domain of the nucleocapsid protein (N-NTD) plays a crucial role in regulating viral genome transcription and assembly by binding to specific RNA sequences.
  • This study provides resonance assignments for the N-NTD of HKU1-CoV, offering insights into its structural and functional properties.

Article Abstract

Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778850PMC
http://dx.doi.org/10.1007/s12104-020-09998-9DOI Listing

Publication Analysis

Top Keywords

resonance assignments
8
n-terminal domain
8
nucleocapsid protein
8
assignments n-terminal
4
domain nucleocapsid
4
protein endemic
4
endemic human
4
human coronavirus
4
coronavirus hku1
4
hku1 coronaviruses
4

Similar Publications

HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.

View Article and Find Full Text PDF

Generation of high-resolution MPRAGE-like images from 3D head MRI localizer (AutoAlign Head) images using a deep learning-based model.

Jpn J Radiol

January 2025

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.

View Article and Find Full Text PDF

Purpose: To construct a nomogram combining Kaiser score (KS), synthetic MRI (syMRI) parameters, apparent diffusion coefficient (ADC), and clinical features to distinguish benign and malignant breast lesions better.

Methods: From December 2022 to February 2024, a retrospective cohort of 168 patients with breast lesions diagnosed as Breast Imaging Reporting and Data System (BI-RADS) category 4 by ultrasound and/or mammography was included. The research population was divided into the training set (n = 117) and the validation set (n = 51) by random sampling with a ratio of 7:3.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Aims: A cardiovascular magnetic resonance (CMR) approach to non-invasively estimate left ventricular (LV) filling pressure was recently developed and shown to correlate with invasively measured pulmonary capillary wedge pressure (PCWP). We examined the association between CMR-estimated PCWP (CMR-PCWP) and other imaging and biomarker measures of congestion, and the effect of empagliflozin on these, in the SUGAR-DM-HF trial (NCT03485092).

Methods And Results: SUGAR-DM-HF enrolled 105 patients with heart failure with reduced ejection fraction (HFrEF) and pre-diabetes or type 2 diabetes who were randomly assigned to empagliflozin 10 mg or placebo once daily for 36 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!