Diabetes mellitus (DM) is one of the major metabolic diseases. Xerostomia and salivary gland dysfunction are of its common oral complications. Exosomes, as a new therapeutic potential containing nucleic acids, proteins and lipids, act as effective vehicles for target molecules delivery. Accordingly, their therapeutic use is gaining much interest. Therefore, this work aimed to assess the therapeutic efficacy of salivary exosomes in ameliorating DM and combating xerostomia as a complication of salivary gland dysfunction in diabetic rats. In the current study, salivary exosomes were injected intravenously to rats of group II (Salivary Exo-treated group) one week after diabetes induction. Group I (Diabetic group) was left untreated. Blood sugar level was checked weekly. Water intake, salivary flow rate, salivary amylase and serum nitric oxide were assessed before and after diabetes induction and at the end of the study. After 5 weeks from the beginning of the study, salivary gland tissues were dissected and examined histologically and ultrastructurally. Gene expression of the inflammatory markers NFκB/p65 and TNFα was assessed by polymerase chain reaction. The results showed that salivary exosomes reduced blood glucose levels and enhanced salivary glands' function. This was indicated by a decrease in water intake, salivary amylase and serum nitric oxide in addition to an increase in salivary flow rate. This was confirmed histologically, ultrastructurally and via downregulation of NFκB/p65 and TNFα gene expression. Our results concluded that salivary exosomes could be considered as a novel cell free based therapy in treatment of xerostomia and salivary gland dysfunction in DM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-020-09935-z | DOI Listing |
J Dent Sci
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.
View Article and Find Full Text PDFJ Clin Exp Dent
December 2024
Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil.
Background: Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration.
Material And Methods: Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science.
Oral Maxillofac Surg
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Objective: A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage.
Methods: BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis.
Cytokine
January 2025
Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India. Electronic address:
Background: Chronic smoking is an established risk factor for oral cancer (OC). The role of tobacco in oral squamous cell cancer (OSCC) emphasizes the need for non-invasive diagnostic approaches to identify early molecular alterations and improve patient outcomes. Salivary exosomes, which contain proteins, lipids, and nucleic acids, accessible and rich in biological content, making them interesting candidate biomarkers.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!