Dermatomyositis: immunological landscape, biomarkers, and potential candidate drugs.

Clin Rheumatol

Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.

Published: June 2021

Introduction: Dermatomyositis (DM) is a rare inflammatory disease characterized by the invasion of the skin and muscles. Environmental, genetic, and immunological factors contribute to disease pathology. To date, no bioinformatics studies have been conducted on the potential pathogenic genes and immune cell infiltration in DM. Therefore, we aimed to identify differentially expressed genes (DEGs) and immune cells, as well as potential pathogenic genes and immune characteristics, which may be useful for the diagnosis and treatment of DM.

Method: GSE1551, GSE5370, GSE39454, and GSE48280 from Gene Expression Omnibus were included in our study. Limma, ClusterProfiler, and Kyoto Encyclopedia of Genes and Genomes were used to identify DEGs, Gene Ontology (GO), and perform pathway analyses, respectively. Cytoscape was used to construct the protein-protein interaction (PPI) network. Small-molecule drugs were identified using a connectivity map (CMap), and the TIMER database was used to identify infiltrating cells.

Results: DEG analysis identified 12 downregulated and 163 upregulated genes. GO analysis showed that DEGs were enriched in immune-related pathways. Ten hub genes were identified from the PPI network. Additionally, CMap analysis showed that caffeic acid, sulfaphenazole, molindone, tiabendazole, and bacitracin were potential small-molecule drugs with therapeutic significance. We identified eight immune cells with differential infiltration in patients with DM and controls. Finally, we constructed a powerful diagnostic model based on memory B cells, M1, and M2 macrophages.

Conclusions: This study explored the potential molecular mechanism and immunological landscape of DM and may guide future research and treatment of DM.

Key Points: • We explored the molecular mechanism and immunological landscape of dermatomyositis. • GO analysis showed that DEGs were enriched in immune-related pathways. • We predicted small-molecular drugs with potential therapeutic significance based on bioanalytical techniques. • We identified six immune cells with differential infiltration in patients with DM and controls.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10067-020-05568-5DOI Listing

Publication Analysis

Top Keywords

immunological landscape
12
immune cells
12
potential pathogenic
8
pathogenic genes
8
genes immune
8
ppi network
8
small-molecule drugs
8
analysis degs
8
degs enriched
8
enriched immune-related
8

Similar Publications

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Changes in the Microbiome During Chronic Rhinosinusitis.

Pathogens

December 2024

Department of Otolaryngology and Laryngological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznań, Poland.

Chronic rhinosinusitis (CRS) is a common inflammatory disease of the paranasal sinuses with a yet unknown etiology. As studies continue to elucidate the disease's heterogeneity inflammatory profile and presentation, there is a growing interest in the influence of the nasal microbiome on disease pathogenesis and chronicity. The sinus microbiota appear dominated by the and genera; known upper airway pathogens, such as , are present in the upper airways of healthy individuals, though at relatively lower abundances than in CRS patients.

View Article and Find Full Text PDF

Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group.

J Clin Med

January 2025

Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium.

Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta-cells, leading to lifelong insulin dependence. This review explores the current understanding of T1D pathogenesis, clinical progression, and emerging therapeutic approaches. We examined the complex interplay between genetic predisposition and environmental factors that could trigger the autoimmune response as well as the immunological mechanisms involved in beta-cell destruction.

View Article and Find Full Text PDF

Female Oncofertility and Immune Checkpoint Blockade in Melanoma: Where Are We Today?

Cancers (Basel)

January 2025

Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1Z5, Canada.

The incidence of melanoma among young adults has risen, yet mortality has declined annually since the introduction of immune checkpoint inhibitors (ICI). The utilization of peri-operative ICI has significantly altered the treatment landscape in melanoma, with PD-1 inhibitors showing promising efficacy in improving relapse-free survival rates in high-risk stage II-III disease. With the increasing use of ICI, secondary concerns have emerged regarding the impact of cancer drugs on fertility and reproductive health among women of childbearing potential, especially in early-stage cancer settings.

View Article and Find Full Text PDF

Comprehensive Analysis of the Immune Response to SARS-CoV-2 Epitopes: Unveiling Potential Targets for Vaccine Development.

Biology (Basel)

January 2025

Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou University Medical College, Shantou 515041, China.

SARS-CoV-2 continues to be a major global health threat. In this study, we performed a comprehensive meta-analysis on the epitopes of SARS-CoV-2, revealing its immunological landscape. Furthermore, using Shannon entropy for sequence conservation analysis and structural network-based methods identified candidate epitopes that are highly conserved and evolutionarily constrained in SARS-CoV-2 and other zoonotic coronaviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!