mTORC1 and mTORC2 Converge on the Arp2/3 Complex to Promote Kras-Induced Acinar-to-Ductal Metaplasia and Early Pancreatic Carcinogenesis.

Gastroenterology

Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China; German Cancer Consortium at the partner site Munich, Munich, Germany. Electronic address:

Published: April 2021

Background & Aims: Oncogenic Kras induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of Kras, thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown.

Methods: A mouse model of inflammation-accelerated Kras-driven early pancreatic carcinogenesis was used. Rptor, Rictor, and Arpc4 (actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the actin-related protein (Arp) 2/3 complex, respectively.

Results: We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote Kras-driven ADM in mice and in vitro. They use the Arp2/3 complex as a common downstream effector to induce the remodeling the actin cytoskeleton leading to ADM. In particular, mTORC1 regulates the translation of Rac1 (Rac family small GTPase 1) and the Arp2/3-complex subunit Arp3, whereas mTORC2 activates the Arp2/3 complex by promoting Akt/Rac1 signaling. Consistently, genetic ablation of the Arp2/3 complex prevents Kras-driven ADM in vivo. In acinar cells, the Arp2/3 complex and its actin-nucleation activity mediated the formation of a basolateral actin cortex, which is indispensable for ADM and pre-neoplastic transformation.

Conclusions: Here, we show that mTORC1 and mTORC2 attain a dual, yet nonredundant regulatory role in ADM and early pancreatic carcinogenesis by promoting Arp2/3 complex function. The role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.12.061DOI Listing

Publication Analysis

Top Keywords

mtorc1 mtorc2
28
arp2/3 complex
28
early pancreatic
12
pancreatic carcinogenesis
12
acinar cells
12
complex
10
mtorc1
8
acinar-to-ductal metaplasia
8
adm
8
rptor rictor
8

Similar Publications

Background: Alzheimer's disease (AD) is a common neurodegenerative disorder that results in the accumulation of amyloid-beta, neurofibrillary tangles, and progressive cognitive decline. Despite extensive research into the pathophysiology of AD and potential treatments, a definitive cure remains elusive. Appropriate in vitro cell models are crucial for understanding pathophysiology and drug screening for AD.

View Article and Find Full Text PDF

Regulatory T cells in CIDP and the inhibitory effect of rapamycin on them.

Hum Immunol

December 2024

From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China. Electronic address:

We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated.

View Article and Find Full Text PDF

SHIP-1 regulates the differentiation and function of Tregs via inhibiting mTORC1 activity.

Cell Mol Life Sci

December 2024

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Cell metabolism is crucial for orchestrating the differentiation and function of regulatory T cells (Tregs). However, the underlying mechanism that coordinates cell metabolism to regulate Treg activity is not completely understood. As a pivotal molecule in lipid metabolism, the role of SHIP-1 in Tregs remains unknown.

View Article and Find Full Text PDF

Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy.

Cell Death Discov

December 2024

Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice.

View Article and Find Full Text PDF

The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!