Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plants can reduce or eliminate the damage caused by herbicides and gain herbicide resistance, which is an important theoretical basis for the development of herbicide-resistant crops at this stage. Thus, discovering novel herbicide-resistant genes to produce diverse herbicide-resistant crop species is of great value. The glycosyltransferases that commonly exist in plant kingdom modify the receptor molecules to change their physical characteristics and biological activities, and thus possess an important potential to be used in the herbicide-resistance breeding. Here, we identified a novel herbicide-induced UDP-glycosyltransferase 91C1 (UGT91C1) from Arabidopsis thaliana and demonstrated its glucosylating activity toward sulcotrione, a kind of triketone herbicides widely used in the world. Overexpression of UGT91C1 gene enhanced the Arabidopsis tolerance to sulcotrione. While, ugt91c1 mutant displayed serious damage and reduced chlorophyll contents in the presence of sulcotrione, suggesting an important role of UGT91C1 in herbicide detoxification through glycosylation. Moreover, it was also noted that UGT91C1 can affect tyrosine metabolism by reducing the sulcotrione toxicity. Together, our identification of glycosyltransferase UGT91C1, as a potential gene conferring herbicide detoxification through glucosylation, may open up a new possibility for herbicide resistant breeding of crop plants and environmental phytoremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.12.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!