Single-cell RNA sequencing of mouse neural stem cell differentiation reveals adverse effects of cadmium on neurogenesis.

Food Chem Toxicol

School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China. Electronic address:

Published: February 2021

Cadmium (Cd) is a toxic heavy metal and widely exists in the environment. Extensive studies have revealed that Cd exposure can elicit neurotoxicity and potentially interfere with neurogenesis. However, underlying mechanisms by which Cd exposure affects neurogenesis remain unclear. In this study, we performed single-cell RNA sequencing (scRNA-seq) of the differentiated mixture from neonatal mouse Neural Stem Cells (mNSCs) that were exposed to Cd for 24 h and differentiated for 7 days. Our results showed that Cd exposure led to an increase in the differentiation of NSCs into astrocytes while a decrease into neurons. Besides, Cd induced subtype-specific response and dysregulated cell-to-cell communication. Collectively, our scRNA-seq data suggested that Cd had toxic effects on NSCs differentiation at the single-cell level, which offered insight into the potential molecular mechanism of Cd on neurogenesis. Furthermore, our findings provided a new method for assessing the neurodevelopmental toxicity of environmental pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111936DOI Listing

Publication Analysis

Top Keywords

single-cell rna
8
rna sequencing
8
mouse neural
8
neural stem
8
sequencing mouse
4
stem cell
4
cell differentiation
4
differentiation reveals
4
reveals adverse
4
adverse effects
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.

Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!