A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. | LitMetric

Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose.

Int J Biol Macromol

School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea. Electronic address:

Published: February 2021

A new class of bio based polymer blends have been prepared from a modified chitosan based benzoxazine precursor (E-ch) and amino cellulose (AC). AC was derived from cellulose with excellent film-forming, biocompatibility and biodegradability property. E-ch was synthesized from eugenol, modified chitosan and paraformaldehyde. The chemical structure was confirmed by FT-IR and H NMR analyses. Bio films were prepared by mixing E-ch and AC with diluted acetic acid, in different ratios. These films were further cross-linked by applying heat, via ring-opening polymerization of benzoxazine without any curing agent. FT-IR and DSC were used to study the effects of AC on E-ch to form cross-linked network polymer films [poly(E-ch)/AC]. Hydrogen bonding interactions were found to exist between poly(E-ch) and AC. These kinds of interactions considerably improve the mechanical and thermal properties and char yield of the polymer films. Additionally, these biofilms; poly(E-ch) and poly(E-ch)/AC have been examined for bio-activity with S. aureus. It is confirmed that these bio-films are effective in inhibiting bio-film related infection. In a similar way, both the bio-films act against C. albicans and thus avoid the formation of mycological infection. These results expose that poly(E-ch) and AC bio-films are capable to act as anti-microbial and anti-fungal agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.087DOI Listing

Publication Analysis

Top Keywords

modified chitosan
8
polymer films
8
development sustainable
4
sustainable antimicrobial
4
antimicrobial film
4
film based
4
based polybenzoxazine
4
polybenzoxazine cellulose
4
cellulose class
4
class bio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!