Preparation of alpha cellulose from sugarcane bagasse and its cationization: Synthesis, characterization, validation and application as wet-end additive.

Int J Biol Macromol

Cellulose & Paper Discipline, Forest Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India. Electronic address:

Published: February 2021

Paper industry uses cationic polymers for imparting strong bonds with pulp furnish to enhance strength properties. Due to environmental reasons, emphasis is on utilization of biobased polymers in place of synthetic. Sugarcane bagasse, an agro-industrial waste, was processed for extraction of alpha cellulose and preparation of cationic derivative. Reaction conditions were optimized to achieve highly substituted cationic derivative with insertion of 2-hydroxy-3-(trimethylammonium) propyl group. Artificial neural network (ANN) was applied to analyze the experimental data for cationization modeling. Maximum degree of substitution 0.66, was achieved at 5.0 M NaOH/anhydro glucose unit (AGU), 20 °C alkalization temperature, 8 min alkalization time, 3.5 M/AGU etherification agent concentration, 45 min time and 60 °C etherification reaction temperature. The experimental results showed that mean square error values for input parameters were significantly low. The ANN based regression values of the output, and computed values of target were close to unity. ANN based fitting indicates better performance level to predict the degree of substitution. The synthesized cationic cellulose was characterized through FTIR, XRD, NMR, FESEM and TGA. The activity of cationized cellulose as wet-end additive was tested for bagasse, wheat straw and recycled pulps due to their shorten fiber and feeble pulp characters than wood pulp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.165DOI Listing

Publication Analysis

Top Keywords

alpha cellulose
8
sugarcane bagasse
8
wet-end additive
8
cationic derivative
8
degree substitution
8
ann based
8
preparation alpha
4
cellulose
4
cellulose sugarcane
4
bagasse cationization
4

Similar Publications

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.

View Article and Find Full Text PDF

Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment.

Int J Biol Macromol

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:

Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.

View Article and Find Full Text PDF

A review of lignin as a precursor for macromonomers: Challenges and opportunities in utilizing agri-food waste.

Int J Biol Macromol

January 2025

Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. Electronic address:

Lignocellulosic biomass, rich in cellulose, hemicellulose, and lignin, represents a promising renewable resource. However, lignin, a complex polyphenolic material, remains underutilized despite its surplus production. This review focuses on the conversion of lignin into macromonomers for polymer production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!