Climate change and the intensification of anthropogenic activities in watersheds have been substantially changing the streamflow regime, which is a problem for water resource managers. This study assesses the influence of the changes in land use and land cover and rainfall on the streamflow regime. This study also models the pattern of these streamflows according to the rainfall and land use and land cover in the Santo Antônio River watershed, located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado. To assess the dynamic relationship between land use and land cover and the streamflow regime, five classes of land use and land cover were used. To characterize the hydrological pattern, data from six streamflow gauges and 24 rainfall gauges that influence the study area were used. Multiple regression models were adjusted to estimate streamflow using the explanatory variables rainfall and land use and land cover. As result, a direct relationship was found, as the decrease in streamflow in some drainage areas was influenced by the decrease in rainfall over the base period. The relationship between land use and land cover and streamflow was not significant. The reductions in the streamflow regimes over the years in the watershed were influenced by reductions in annual rainfall, which reduced about 19% while the water withdrawals from 2003 to 2014 increased 2350%. The results found in this study are useful to the water managers since they can estimate streamflow in any part of the studied river through rainfall and land use and land cover data. This helps to reduce the risks associated with the water allocation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-020-08782-5 | DOI Listing |
Ambio
December 2024
Center for Space and Remote Sensing Research, Zhongli District, National Central University, Taoyuan City, 32001, Taiwan.
Unsustainable land use practices have led to increased forest loss rates. Implementing cacao agroforestry can reduce forest loss by preventing the clear-cutting of forests for monoculture plantations. However, research is needed on its effectiveness in preventing forest loss and the factors influencing its adoption between full-time and part-time farmers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Institute of Marine Economics and Management, Shandong University of Finance and Economics, Lixia District, Second Ring East Road, Jinan, 7366250000, China.
Biodiversity is crucial for maintaining ecosystem stability and achieving sustainable development. However, global biodiversity loss is a common challenge faced by most countries. Therefore, based on the data from the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and the Eora database, we used the multi-regional input-output (MRIO) model to calculate biodiversity loss in 188 countries.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee-247667, Roorkee, Uttarakhand, India.
Groundwater is an essential freshwater source worldwide, but increasing pollution poses risks to its sustainability. This study applied a comprehensive approach to assess hydrogeochemical facies and groundwater quality in Odisha's large low-lying coastal regions. Analysis of 136 samples revealed that sodium (9.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China.
Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!