Purpose: To describe clinical data, rehabilitation services, and outcomes of children with handedness switching as their presenting symptom before low-grade glioma (LGG) diagnosis.

Methods: A retrospective chart review was performed for five patients (four female and four white) with LGG and confirmed handedness switching before LGG diagnosis.

Results: All children were less than 8 years at diagnosis, and two patients were less than 3 years. All children were initially right-handed and experienced loss of motor function, ranging from weakness to paresis, in their dominant hand. The median time from switching handedness to diagnosis was 1 month (range: 0.75-60 months). Rehabilitation was offered for three patients, and motor function deficits in the initial dominant hand were resolved in two of the total cohort. At long-term follow-up, hand dominance returned to the initial hand in three patients.

Conclusions: Handedness switching should be acknowledged as a potential sign of LGG in children, and early long-term rehabilitation services should be offered for these children.

Download full-text PDF

Source
http://dx.doi.org/10.3233/PRM-190637DOI Listing

Publication Analysis

Top Keywords

handedness switching
16
switching presenting
8
rehabilitation services
8
motor function
8
dominant hand
8
handedness
5
children
5
presenting sign
4
sign pediatric
4
pediatric low-grade
4

Similar Publications

Dynamically Tunable Chiroptical Activities of Flexible Chiral Plasmonic Film via Surface Buckling.

Small

December 2024

School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China.

Article Synopsis
  • Plasmonic nanoparticle-based chiral materials utilize strong light-matter interaction and tunable resonance frequencies but face challenges in dynamic modulation of their chiroptical properties.
  • Researchers created chiral assemblies using gold nanospheres (AuNSs) through mechanical-induced surface buckling, resulting in a unique "S-shaped" 3D structure that enhances circular dichroism (CD) responses.
  • This method allows for reversible adjustments in CD signal magnitude and handedness, presenting opportunities for advanced applications in information encryption and paving the way for new design strategies in chiral optical materials.
View Article and Find Full Text PDF

Reversible Circularly Polarized Luminescence Inversion and Emission Color Switching in Photo-Modulated Supramolecular Polymer for Multi-Modal Information Encryption.

J Am Chem Soc

December 2024

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China.

Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag ions form the Z-PTC Ag supramolecular polymer (SP), which assembles into nanotubes displaying enhanced positive yellow-green CPL.

View Article and Find Full Text PDF

Chiral organic-inorganic hybrid perovskites offer a promising platform for developing non-linear chiro-optical applications and chiral-induced spin selectivity. Here, we show that achiral hybrid perovskites that have highly ordered ferroelectric domains with orthogonal polarization exhibit planar chirality, as manifested by second harmonic generation with strong circular dichroism. Interestingly, the handedness of the second harmonic generation circular dichroism response can be alternatingly switched between orthogonally polarized domains and domain walls.

View Article and Find Full Text PDF

Chirality - a characteristic handedness that distinguishes 'left' from 'right'-is a fundamental property of quantum particles under broken symmetry intimately connected to their spins. Chiral fermions have been identified in Weyl semimetals through their unique electrodynamics arising from 'axial' charge imbalance between pairs of chiral Weyl nodes-the topologically protected 'relativistic' crossings of electronic bands. Chiral magnetotransport phenomena critically depend on the details of electronic band structure.

View Article and Find Full Text PDF

Supramolecular chirality is the major branch of supramolecular chemistry, which not only plays important roles in biological processes but also in synthetically designed aggregated systems. To understand the complex processing of biological systems, the only way is to design supramolecular chiral ensembles that mimic natural biomolecules such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), amino acids, etc. In addition, chiral systems and self-assemblies as molecular motifs with breaking spatial inversion symmetry have been regarded as key substances in electronics and spintronics as well as in fundamental chemistry and physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!