Discriminative dictionary learning algorithm with pairwise local constraints for histopathological image classification.

Med Biol Eng Comput

Institute of Biophysics Linguistics, College of Foreign Languages, Hunan University, Changsha, Hunan, People's Republic of China.

Published: January 2021

Histopathological image contains rich pathological information that is valued for the aided diagnosis of many diseases such as cancer. An important issue in histopathological image classification is how to learn a high-quality discriminative dictionary due to diverse tissue pattern, a variety of texture, and different morphologies structure. In this paper, we propose a discriminative dictionary learning algorithm with pairwise local constraints (PLCDDL) for histopathological image classification. Inspired by the one-to-one mapping between dictionary atom and profile, we learn a pair of discriminative graph Laplacian matrices that are less sensitive to noise or outliers to capture the locality and discriminating information of data manifold by utilizing the local geometry information of category-specific dictionaries rather than input data. Furthermore, graph-based pairwise local constraints are designed and incorporated into the original dictionary learning model to effectively encode the locality consistency with intra-class samples and the locality inconsistency with inter-class samples. Specifically, we learn the discriminative localities for representations by jointly optimizing both the intra-class locality and inter-class locality, which can significantly improve the discriminability and robustness of dictionary. Extensive experiments on the challenging datasets verify that the proposed PLCDDL algorithm can achieve a better classification accuracy and powerful robustness compared with the state-of-the-art dictionary learning methods. Graphical abstract The proposed PLCDDL algorithm. 1) A pair of graph Laplacian matrices are first learned based on the class-specific dictionaries. 2) Graph-based pairwise local constraints are designed to transfer the locality for coding coefficients. 3) Class-specific dictionaries can be further updated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-020-02281-yDOI Listing

Publication Analysis

Top Keywords

dictionary learning
16
pairwise local
16
local constraints
16
histopathological image
16
discriminative dictionary
12
image classification
12
learning algorithm
8
algorithm pairwise
8
graph laplacian
8
laplacian matrices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!