Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand-target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ddtec.2020.08.003 | DOI Listing |
iScience
February 2025
Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.
View Article and Find Full Text PDFInt J Clin Health Psychol
January 2025
Faculty of Psychology, Southwest University, Chongqing 400715, China.
Objective: The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors.
Methods: In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI.
Gastro Hep Adv
September 2024
Blacktown Clinical School, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia.
Gastro Hep Adv
October 2024
Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California.
Background And Aims: Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!