Anthropogenic inputs into the environment may serve as sources of antimicrobial resistant bacteria and alter the ecology and population dynamics of synanthropic wild animals by providing supplemental forage. In this study, we used a combination of phenotypic and genomic approaches to characterize antimicrobial resistant indicator bacteria, animal telemetry to describe host movement patterns, and a novel modeling approach to combine information from these diverse data streams to investigate the acquisition and long-distance dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Our results provide evidence that gulls acquire antimicrobial resistant bacteria from anthropogenic sources, which they may subsequently disperse across and between continents via migratory movements. Furthermore, we introduce a flexible modeling framework to estimate the relative dispersal risk of antimicrobial resistant bacteria in western North America and adjacent areas within East Asia, which may be adapted to provide information on the risk of dissemination of other organisms and pathogens maintained by wildlife through space and time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.144551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!