The zebrafish retina expresses four recoverin genes (rcv1a, rcv1b, rcv2a and rcv2b) and four opsin kinase genes (grk1a, grk1b, grk7a and grk7b) coding for recoverin and G protein-coupled receptor kinase (opsin kinase) paralogs, respectively. Both protein groups are suggested to form regulatory complexes in rod and cone outer segments, but at present, we lack information about co-localization of recoverin and opsin kinases in zebrafish retinae and which protein-protein interacting pairs form. We analyzed the distribution and co-localization of recoverin and opsin kinase expression in the zebrafish retina. For this purpose, we used custom-tailored monospecific antibodies revealing that the amount of recoverin paralogs in a zebrafish retina can differ by more than one order of magnitude with the highest amount for recoverin 1a and 2b. Further, immunohistochemical labelling showed presence of recoverin 1a in all rod cell compartments, but it only co-localized with opsin kinase 1a in rod outer segments. In contrast, recoverin 2b was only detected in double cones and co-localized with opsin kinases 1b, 7a and 7b. Further, we investigated the interaction between recoverin and opsin kinase variants by surface plasmon resonance spectroscopy indicating interaction of recoverin 1a and recoverin 2b with all opsin kinases. However, binding kinetics for recoverin 1a differed from those observed with recoverin 2b that showed slower association and dissociation processes. Our results indicate diverse recoverin and opsin kinase properties due to differential expression and interaction profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2020.118946 | DOI Listing |
PLoS Genet
November 2024
Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction.
View Article and Find Full Text PDFAnimals (Basel)
June 2024
Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315000, China.
Agonistic behavior has been identified as a limiting factor in the development of intensive aquaculture. However, the characteristics and molecular mechanisms underlying agonistic behavior in remain unclear. In this study, we quantified agonistic behavior through a behavioral observation system and generated a comprehensive database of eyestalk and brain ganglion tissues obtained from both aggressive and nonaggressive employing transcriptome analysis.
View Article and Find Full Text PDFCurr Protoc
April 2024
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis.
View Article and Find Full Text PDFPflugers Arch
December 2023
Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells.
View Article and Find Full Text PDFA key assumption in studies of cortical functions is that excitatory principal neurons, but not inhibitory cells express calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα) resulting in a widespread use of CaMKIIα promoter-driven protein expression for principal cell manipulation and monitoring their activities. Using neuroanatomical and electrophysiological methods we demonstrate that in addition to pyramidal neurons, multiple types of cortical GABAegic cells are targeted by adeno-associated viral vectors (AAV) driven by the CaMKIIα promoter in both male and female mice. We tested the AAV5 and AAV9 serotype of viruses with either Channelrhodopsin 2 (ChR2)-mCherry or Archaerhodopsin-T-green fluorescent protein (GFP) constructs, with different dilutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!